jueves, 18 de mayo de 2017

12 REFERENCIAS BIBLIOGRÁFICAS DE LA FOTOSÍNTESIS

  1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2015). Molecular biology of the cell (5th ed.). Garland Science.
  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). The Evolution of Electron-Transport Chains.
  3. Bassham, J. A., Benson, A. A., & Calvin, M. (1950). The path of carbon in photosynthesis VIII. The role of malic acid. Lawrence Berkeley National Laboratory.
  4. Bassham, J. A., Benson, A. A., Kay, L. D., Harris, A. Z., Wilson, A. T., & Calvin, M. (1954). The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor1. Journal of the American Chemical Society, 76(7), 1760–1770.
  5. Becerra, A., Rivas, M., García-Ferris, C., Lazcano, A., & Peretó, J. (2014). A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways. International Microbiology, 17(2), 91–97.
  6. Bekker, A., Planavsky, N., Rasmussen, B., Krapez, B., Hofmann, A., Slack, J., … Konhauser, K. (2014). Iron formations: their origins and implications for ancient seawater chemistry. In Treatise on Geochemistry (Vol. 12, pp. 561–628). Elsevier.
  7. Belk, C., & Maier, V. B. (2013). Biology Science for Life with physiology. (Pearson, Ed.) (4th ed.).
  8. Benson, A. A., Bassham, J. A., Calvin, M., Goodale, T. C., Haas, V. A., & Stepka, W. (1950). The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products1. Journal of the American Chemical Society, 72(4), 1710–1718.
  9. Benson, A. A., Bassham, J. A., Calvin, M., Hall, A. G., Hirsch, H., Kawaguchi, S., … Tolbert, N. E. (1952). The Path of Carbon in Photosynthesis, XV. Ribulose and Sedoheptulose. Lawrence Berkeley National Laboratory.
  10. Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2015). Biochemistry (8th ed.). Freeman.
  11. Biel, K., & Fomina, I. (2015). Benson-Bassham-Calvin cycle contribution to the organic life on our planet. Photosynthetica, 53(2), 161–167.
  12. Björn, L. O., Papageorgiou, G. C., Dravins, D., & Govindjee, G. (2009). Detectability of life and photosynthesis on exoplanets. INDIAN ACAD SCIENCES CV RAMAN AVENUE, SADASHIVANAGAR, PB# 8005, BANGALORE 560 080, INDIA.
  13. Blankenship, R. E. (1992). Origin and early evolution of photosynthesis. Photosynthesis Research, 33(2), 91–111.
  14. Blankenship, R. E. (2002). Origin and evolution of photosynthesis. Molecular Mechanisms of Photosynthesis, 220–257.
  15. Blankenship, R. E. (2010). Early evolution of photosynthesis. Plant Physiology, 154(2), 434–438.
  16. Blankenship, R. E., & Hartman, H. (1998). The origin and evolution of oxygenic photosynthesis. Trends in Biochemical Sciences, 23(3), 94–97.
  17. Brack, A. (1998). The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press.
  18. Buick, R. (2008). When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1504), 2731–2743.
  19. Calvin, M., Bassham, J. A., Benson, A. A., Lynch, V., Ouellet, C., Schou, L., … Tolbert, N. E. (1950). The path of carbon in photosynthesis. X. Carbon dioxide assimilation in plants. Lawrence Berkeley National Laboratory.
  20. Campbell, M. K., & Farrell, S. O. (2012). Biochemistry (7th ed.). Canadá: Brooks/Cole.
  21. Cardona, T. (2017). Photosystem II is a Chimera of Reaction Centers. Journal of Molecular Evolution, 84(2-3), 149–151.
  22. Cardona, T., Murray, J. W., & Rutherford, A. W. (2015). Origin and evolution of water oxidation before the last common ancestor of the Cyanobacteria. Molecular Biology and Evolution, msv024.
  23. Carson, S. F., Ruben, S., Kamen, M. D., & Foster, J. W. (1941). Radioactive Carbon as an Indicator of Carbon Dioxide Utilization VI. On the Possibility of Carbon Dioxide Reduction via the Carboxylase System. Proceedings of the National Academy of Sciences, 27(10), 475–480.
  24. Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., … Kubo, A. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 42(D1), D459–D471.
  25. Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., … Mueller, L. A. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, 44(D1), D471–D480.
  26. Caspi, R., Dreher, K., & Karp, P. D. (2013). The challenge of constructing, classifying, and representing metabolic pathways. FEMS Microbiology Letters, 345(2), 85–93.
  27. COOMB, J., Baldry, C. W., & Bucke, C. (2016). C4 PHOTOSYNTHESIS. In Botany: Proceedings of the Fiftieth Anniversary Meeting of the Society for Experimental Biology (p. 177). Elsevier.
  28. De Clerck, O., Bogaert, K. A., & Leliaert, F. (2012). Diversity and evolution of algae: primary endosymbiosis. Adv Bot Res, 64, 55–86.
  29. De Duve, C., & Pizano, M. (1995). Polvo vital: origen y evolución de la vida en la tierra. Norma, Bogotá.
  30. Emerson, R., & Arnold, W. (1932a). A separation of the reactions in photosynthesis by means of intermittent light. The Journal of General Physiology, 15(4), 391.
  31. Emerson, R., & Arnold, W. (1932b). The photochemical reaction in photosynthesis. The Journal of General Physiology, 16(2), 191–205.
  32. Foster, J. W., Carson, S. F., Ruben, S., & Kamen, M. D. (1941). Radioactive Carbon as an Indicator of Carbon Dioxide Utilization VII. The Assimilation of Carbon Dioxide by Molds. Proceedings of the National Academy of Sciences, 27(12), 590–596.
  33. Fru, E. C., Rodríguez, N. P., Partin, C. A., Lalonde, S. V, Andersson, P., Weiss, D. J., … Konhauser, K. O. (2016). Cu isotopes in marine black shales record the Great Oxidation Event. Proceedings of the National Academy of Sciences, 201523544.
  34. Furbank, R. T. (2016). Walking the C4 pathway: past, present, and future. Journal of Experimental Botany, erw161.
  35. Gargaud, M., Martin, H., López-García, P., Montmerle, T., & Pascal, R. (2012). Intermezzo: The Gestation of Life and its First Steps. In Young Sun, Early Earth and the Origins of Life (pp. 93–154). Springer.
  36. Garrett, R. H., & Grisham, C. M. (2013). Biochemistr y (5th ed.). Brooks/Cole.
  37. Gaucher, C., Sial, A. N., & Frei, R. (2015). Chemostratigraphy of Neoproterozoic banded iron formation (BIF): types, age and origin. Chemostratigraphy: Concepts, Techniques and Applications. Elsevier, Amsterdam, 43.
  38. Gollihar, J., Levy, M., & Ellington, A. D. (2014). Many Paths to the Origin of Life. Science, 343(6168), 259–260.
  39. Gorbushina, A. A. (2007). Life on the rocks. Environmental Microbiology, 9(7), 1613–1631.
  40. Gray, M. W., & Archibald, J. M. (2012). Origins of mitochondria and plastids. In Genomics of Chloroplasts and Mitochondria (pp. 1–30). Springer.
  41. Hibberd, J. M., & Furbank, R. T. (2016). In retrospect: Fifty years of C4 photosynthesis. Nature, 538(7624), 177–179.
  42. Hoefnagels, M. (2015). Biology: concepts and investigations (3rd ed.). McGraw-Hill New York.
  43. Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548.
  44. Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 903–915.
  45. Johnson, A., Romaniello, S. J., Reinhard, C., Garcia-Robledo, E., Revsbech, N. P., Canfield, D. E., … Anbar, A. D. (2015). Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event. In AGU Fall Meeting Abstracts.
  46. Kump, L. R. (2008). The rise of atmospheric oxygen. Nature, 451(7176), 277–278.
  47. Kump, L. R., & Barley, M. E. (2007). Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448(7157), 1033–1036.
  48. Kutschera, U., & Niklas, K. J. (2004). The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften, 91(6), 255–276.
  49. Lieberman, M. A., & Rice, R. (2014). Biochemistry, Molecular, Biology, and Genetics (6th ed.). Lippincott Williams & Wilkins.
  50. Mackean, D. G., & Hayward, D. (2014). Biology (3rd ed.). IGCSE Cambridge.
  51. Mader, S. S. (2010). Biology (10th ed.). McGraw-Hill Education.
  52. Mader, S. S., & Windelspecht, M. (2015). Biology (12th ed.). McGraw-Hill Education.
  53. Mader, S. S., & Windelspecht, M. (2018). Essentials of biology (5th ed.). McGraw-Hill Education.
  54. Mason, K. A., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology (7th ed.). McGraw-Hill New York.
  55. Mauseth, J, D. (2012). Botany: An Introduction to Plant Biology (5th ed.). Jones & Bartlett Learning.
  56. Meisenberg, G., & Simmons, W. H. (2017). Principles o medical biochemistry (4th ed.). Philadelphia: Elsevier.
  57. Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V., & Weil, A. (2012). Harpers Illustrated Biochemistry (29th ed.). McGraw-Hill Medical.
  58. Nelson, D. L., & Cox, M. M. (2008). Principles of biochemistry (5th ed.). Freeman.
  59. Pace, N. R. (2001). The universal nature of biochemistry. Proceedings of the National Academy of Sciences, 98(3), 805–808.
  60. Pessarakli, M. (2016). Handbook of photosynthesis. CRC Press.
  61. Planavsky, N. J., Asael, D., Hofmann, A., Reinhard, C. T., Lalonde, S. V, Knudsen, A., … Smith, A. J. B. (2014). Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geoscience, 7(4), 283–286.
  62. Raven, J. A., Andrews, M., & Quigg, A. (2005). The evolution of oligotrophy: implications for the breeding of crop plants for low input agricultural systems. Annals of Applied Biology, 146(3), 261–280.
  63. Raven, J., & Skene, K. (2003). Chemistry of the early oceans: the environment of early life. Evolution on Planet Earth—the Impact of the Physical Environment, 55–64.
  64. Reece, J. B., Urry, L. A., Wasserman, S. A., Cain, M. L., Minorsky, P. V, & Jackson, R. B. (2014). Campbell Biology (10th ed.). Pearson Higher Ed.
  65. RicARdo, A., & Szostak, J. W. (2009). Origin of life on earth. Scientific American, 301(3), 54–61.
  66. Ruben, S., & Kamen, M. D. (1941). Long-lived radioactive carbon: C 14. Physical Review, 59(4), 349.
  67. Ruben, S., Randall, M., Kamen, M., & Hyde, J. L. (1941). Heavy oxygen (O18) as a tracer in the study of photosynthesis. Journal of the American Chemical Society, 63(3), 877–879.
  68. Ruvindy, R., White III, R. A., Neilan, B. A., & Burns, B. P. (2016). Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. The ISME Journal, 10(1), 183–196.
  69. Sadava, D., Berenbaum, M., & Hillis, D. (2014). Life the Science of Biology (10th ed.). Sinauer & MacMillian.
  70. Schirrmeister, B. E., de Vos, J. M., Antonelli, A., & Bagheri, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences, 110(5), 1791–1796.
  71. Schirrmeister, B. E., Gugger, M., & Donoghue, P. C. J. (2015). Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology, 58(5), 769–785.
  72. Schneider, E. D., & Kay, J. J. (1994). Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, 19(6-8), 25–48.
  73. Schneider, E. D., & Kay, J. J. (1995). Order from disorder: the thermodynamics of complexity in biology. What Is Life? The next Fifty Years: Speculations on the Future of Biology, 161–172.
  74. Schou, L., Benson, A. A., Bassham, J. A., & Calvin, M. (1950). The Path of Carbon in Photosynthesis, XI The Role of Glycolic Acid. Physiologia Plantarum, 3(4), 487–495.
  75. Sepúlveda, R., Ortiz, R., & Holmes, D. S. (2015). Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth. In AGU Fall Meeting Abstracts.
  76. Simon, E., Reece, J., & Dickey, J. (2013). Essential biology with physiology (4th ed.). Pearson.
  77. Solomon, E., Martin, C., Martin, D. W., & Berg, L. R. (2014). Biology (10th ed.). Cengage Learning.
  78. Stanier, R. Y., & Van Niel, C. B. (1941). The main outlines of bacterial classification. Journal of Bacteriology, 42(4), 437.
  79. Starr, C., Evers, C., & Starr, L. (2013). Biology: Today and Tomorrow With Physiology (4th ed.). Brooks/Cole.
  80. Stern, K. R., Bidlack, J. E., & Jansky, S. H. (2008). Introductory Plant Biology (11th ed.). McGraw-Hill New York.
  81. Tarbuck, E. J., Lutgents, F. K., & Tasa, D. (2014). Earth, an introduction to physical geology, 11ed. Boston, Pearson.
  82. Van Niel, C. B. (1935). Photosynthesis of bacteria. In Cold Spring Harbor Symposia on Quantitative Biology (Vol. 3, pp. 138–150). Cold Spring Harbor Laboratory Press.
  83. van Niel, C. B. (1949). The comparative biochemistry of photosynthesis. American Scientist, 37(3), 371–383.
  84. Van Niel, C. B. (2006). The bacterial photosyntheses and their importance for the general problem of photosynthesis. Advances in Enzymology, 1, 263–328.
  85. Voet, D., Voet, J. G., & Pratt, C. W. (2013). Fundamentals of biochemistry (4th ed.). Wiley & Sons.
  86. Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23–29.
  87. Wächtershäuser, G. (1990). The case for the chemoautotrophic origin of life in an iron-sulfur world. Origins of Life and Evolution of the Biosphere, 20(2), 173–176.
  88. Wayne, R. (2009). Plant Cell Biology (1st ed.). San Diego: Elsevier.
  89. Xiong, J., Fischer, W. M., Inoue, K., Nakahara, M., & Bauer, C. E. (2000). Molecular evidence for the early evolution of photosynthesis. Science, 289(5485), 1724–1730.
  90. Zerkle, A. L., Poulton, S. W., Newton, R. J., Mettam, C., Claire, M. W., Bekker, A., & Junium, C. K. (2017). Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature, 542(7642), 465–467

No hay comentarios:

Publicar un comentario