miércoles, 14 de diciembre de 2016

12 REFERENCIAS BIBLIOGRÁFICAS DE LA COMUNIDAD ECOLÓGICA

  1. Abrams, P. A. (1986). Adaptive responses of predators to prey and prey to predators: the failure of the arms-race analogy. Evolution, 1229–1247.
  2. Adlard, R. D., Miller, T. L., & Smit, N. J. (2015). The butterfly effect: parasite diversity, environment, and emerging disease in aquatic wildlife. Trends in Parasitology, 31(4), 160–166.
  3. Akcakaya, H. R., Arditi, R., & Ginzburg, L. R. (1995). Ratio‐dependent predation: an abstraction that works. Ecology, 76(3), 995–1004.
  4. Alhajeri, B. H., Schenk, J. J., & Steppan, S. J. (2016). Ecomorphological diversification following continental colonization in muroid rodents (Rodentia: Muroidea). Biological Journal of the Linnean Society, 117(3), 463–481.
  5. Alongi, D. M. (1994). The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. In Ecology and conservation of southeast Asian marine and freshwater environments including wetlands (pp. 19–32). Springer.
  6. Andersson, G. (1982). Naive and critical falsificationism.
  7. Anker, P., & Anker, P. (2009). Imperial ecology: environmental order in the British Empire, 1895-1945. Harvard University Press.
  8. Arditi, R., & Ginzburg, L. R. (1989). Coupling in predator-prey dynamics: ratio-dependence. Journal of Theoretical Biology, 139(3), 311–326.
  9. Arditi, R., & Ginzburg, L. R. (2012). How species interact: altering the standard view on trophic ecology. Oxford University Press.
  10. Azam, F., & Worden, A. Z. (2004). Microbes, molecules, and marine ecosystems. Science, 303(5664), 1622–1624.
  11. Balashov, Y. S. (2011). Parasitism and ecological parasitology. Entomological Review, 91(9), 1216–1223.
  12. Barraclough, T. G. (2015). How do species interactions affect evolutionary dynamics across whole communities? Annual Review of Ecology, Evolution, and Systematics, 46, 25–48.
  13. Barton, L., Newsome, S. D., Chen, F.-H., Wang, H., Guilderson, T. P., & Bettinger, R. L. (2009). Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences, 106(14), 5523–5528.
  14. Bascompte, J. (2009). Mutualistic networks. Frontiers in Ecology and the Environment, 7(8), 429–436.
  15. Baskerville, E. B., Dobson, A. P., Bedford, T., Allesina, S., Anderson, T. M., & Pascual, M. (2011). Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLoS Comput Biol, 7(12), e1002321.
  16. Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From Individuals to Ecosystems (4th ed.). Malden: Blackwell.
  17. Belk, C., & Maier, V. B. (2013). Biology Science for Life with physiology. (Pearson, Ed.) (4th ed.).
  18. Benson, W. W. (1972). Natural selection for Miillerian mimicry in Heliconius erato in Costa Rica. Science, 176(4037), 936–939.
  19. Berlow, E. L., Dunne, J. A., Martinez, N. D., Stark, P. B., Williams, R. J., & Brose, U. (2009). Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences, 106(1), 187–191.
  20. Blanco, D. (2012). Aristas controversiales en la caja negra de Darwin. Lógoi, (8).
  21. Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., … Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4), 183–192.
  22. Borregaard, M. K., Matthews, T. J., & Whittaker, R. J. (2015). The general dynamic model: towards a unified theory of island biogeography? Global Ecology and Biogeography.
  23. Boucher, D. H. (1988). The biology of mutualism: ecology and evolution. Oxford University Press on Demand.
  24. Brodie, E. D., & Brodie, E. D. (1991). Evolutionary response of predators to dangerous prey: reduction of toxicity of newts and resistance of garter snakes in island populations. Evolution, 45(1), 221–224.
  25. Brusca, R., Brusca, G. J., & Haver, N. J. (2003). Invertebrates (2nd ed.). Sinauer Associates.
  26. Buechley, E. R., & Sekercioglu, C. H. (2016). Vultures. Current Biology, 26(13), R560–R561.
  27. Campbell, M. O. (2014). A Fascinating Example for Convergent Evolution: Endangered Vultures. Journal of Biodiversity & Endangered Species, 2014.
  28. Campbell, M. O. (2015). Vultures: Their Evolution, Ecology and Conservation. CRC Press.
  29. Carlsson, N. O. L., Sarnelle, O., & Strayer, D. L. (2009). Native predators and exotic prey–an acquired taste? Frontiers in Ecology and the Environment, 7(10), 525–532.
  30. Carrier, D. R., Kapoor, A. K., Kimura, T., Nickels, M. K., Satwanti, Scott, E. C., … Trinkaus, E. (1984). The energetic paradox of human running and hominid evolution [and comments and reply]. Current Anthropology, 483–495.
  31. Cheng, J. (2009). Mask, mimicry, metamorphosis: Roger Caillois, Walter Benjamin and Surrealism in the 1930s. Modernism/modernity, 16(1), 61–86.
  32. Cittadino, E. (2002). Nature as the laboratory: Darwinian plant ecology in the German empire, 1880-1900. Cambridge University Press.
  33. Crites, G. D. (1987). Human-plant mutualism and niche expression in the paleoethnobotanical record: A Middle Woodland example. American Antiquity, 725–740.
  34. Cunningham, W. P., & Cunningham, M. A. (2007). Environmental science a global concern (10th ed.). New York: McGraw-Hill New York.
  35. de Berg, K. C. (1992). Mathematics in science: The role of the history of science in communicating the significance of mathematical formalism in science. Science & Education, 1(1), 77–87.
  36. De Vos, P. (2006). The science of spices: Empiricism and economic botany in the early Spanish empire. Journal of World History, 399–427.
  37. de Wit, C. A. (1982). Resistance of the prairie vole (Microtus ochrogaster) and the woodrat (Neotoma floridana), in Kansas, to venom of the Osage copperhead (Agkistrodon contortrix phaeogaster). Toxicon, 20(4), 709–714.
  38. Demos, T. J. (2013). The Art and Politics of Ecology in India: A Roundtable with Ravi Agarwal and Sanjay Kak. Third Text, 27(1), 151–161.
  39. DeWoody, J. A. (2016). The Tangled Bank, Ecology, and Gordian Knots. Oxford University Press.
  40. Díaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10‐year period. Ecology, 91(3), 793–801.
  41. Dimitrova, M., & Merilaita, S. (2009). Prey concealment: visual background complexity and prey contrast distribution. Behavioral Ecology, arp174.
  42. Dumbacher, J. P., Wako, A., Derrickson, S. R., Samuelson, A., Spande, T. F., & Daly, J. W. (2004). Melyrid beetles (Choresine): a putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds. Proceedings of the National Academy of Sciences of the United States of America, 101(45), 15857–15860.
  43. Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences, 99(20), 12917–12922.
  44. Egan, S. P. (2016). The Web of Life, the Tangled Bank, and the Frequency of Genetic Exchange. Oxford University Press.
  45. Egerton, F. N. (1983). The history of ecology: achievements and opportunities, part one. Journal of the History of Biology, 16(2), 259–310.
  46. Egerton, F. N. (2002). A History of the Ecological Sciences, Part 6: Arabic Language Science: Origins and Zoological Writings. Bulletin of the Ecological Society of America, 83(2), 142–146.
  47. Egerton, F. N. (2007). Understanding food chains and food webs, 1700–1970. The Bulletin of the Ecological Society of America, 88(1), 50–69.
  48. Egerton, F. N. (2012). Roots of ecology: antiquity to Haeckel. Univ of California Press.
  49. Egerton, F. N. (2014). History of ecological sciences, part 49: Formalizing animal ecology, 1870s to 1920s. The Bulletin of the Ecological Society of America, 95(1), 59–81.
  50. Egerton, F. N. (2015). History of Ecological Sciences, Part 54: Succession, Community, and Continuum. The Bulletin of the Ecological Society of America, 96(3), 426–474.
  51. Eisenberg, C. (2013). The wolf’s tooth: keystone predators, trophic cascades, and biodiversity. Island Press.
  52. Elton, C. (1927). Animal Ecology, 1927. Sidgwick & Jackson, LTD, London.
  53. Emerson, R. M. (1976). Social exchange theory. Annual Review of Sociology, 335–362.
  54. Endler, J. A. (1981). An overview of the relationships between mimicry and crypsis. Biological Journal of the Linnean Society, 16(1), 25–31.
  55. Ericson, P. G. P. (2012). Evolution of terrestrial birds in three continents: biogeography and parallel radiations. Journal of Biogeography, 39(5), 813–824.
  56. Español, D. E. F. (n.d.). History of ecology.
  57. Facon, B., Genton, B. J., Shykoff, J., Jarne, P., Estoup, A., & David, P. (2006). A general eco-evolutionary framework for understanding bioinvasions. Trends in Ecology & Evolution, 21(3), 130–135.
  58. Fergusson, I. K., Compagno, L. J. V, & Marks, M. A. (2000). Predation by white sharks Carcharodon carcharias (Chondrichthyes: Lamnidae) upon chelonians, with new records from the Mediterranean Sea and a first record of the ocean sunfish Mola mola (Osteichthyes: Molidae) as stomach contents. Environmental Biology of Fishes, 58(4), 447–453.
  59. Flannery, M. C. (2014). Book Review Daniela Bleichmar. Visible Empire: Botanical Expeditions and Visual Culture in the Hispanic Enlightenment. Chicago: University of Chicago Press, 2012. 288 pp.; 99 color plates, 2 halftones. $55.00.
  60. Flegr, J. (2006). Evolutionary parasitology: the development of invasion, evasion, and survival mechanisms used by bacterial, viral, protozoan, and metazoan parasites. Food Consumption and Disease Risk–consumer Pathogen Interactions. Woodhead Publication Ltd.: Abington, Cambridge, UK, 251–270.
  61. Fussmann, G. F., & Blasius, B. (2005). Community response to enrichment is highly sensitive to model structure. Biology Letters, 1(1), 9–12.
  62. Gandolfo, G. (2008). Giuseppe palomba and the lotka-volterra equations. Rendiconti Lincei, 19(4), 347–357.
  63. Gavrilets, S., Vose, A., Barluenga, M., Salzburger, W., & Meyer, A. (2007). Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Molecular Ecology, 16(14), 2893–2909.
  64. Glavič, P., & Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875–1885.
  65. Godfray, H. C. J. (1994). Parasitoids: behavioral and evolutionary ecology. Princeton University Press.
  66. Goel, N. S., Maitra, S. C., & Montroll, E. W. (1971). On the Volterra and other nonlinear models of interacting populations. Reviews of Modern Physics, 43(2), 231.
  67. Gomes, J., Mariano, P., & Christensen, A. L. (2014). Novelty search in competitive coevolution. In International Conference on Parallel Problem Solving from Nature (pp. 233–242). Springer.
  68. Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313(5784), 224–226.
  69. Gray, M. W. (2012). Mitochondrial evolution. Cold Spring Harbor Perspectives in Biology, 4(9), a011403.
  70. Hagen, J. B. (1992). An entangled bank: the origins of ecosystem ecology. Rutgers University Press.
  71. Hantak, M. M., Grant, T., Reinsch, S., Mcginnity, D., Loring, M., Toyooka, N., & Saporito, R. A. (2013). Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). Journal of Chemical Ecology, 39(11-12), 1400–1406.
  72. Hardy, S. A. C. (1924). The herring in relation to its animate environment. HM Stationery Office.
  73. Heard, S. B., & Hauser, D. L. (1995). Key evolutionary innovations and their ecological mechanisms. Historical Biology, 10(2), 151–173.
  74. Heatwole, H., & Poran, N. S. (1995). Resistances of sympatric and allopatric eels to sea snake venoms. Copeia, 136–147.
  75. Hilborn, A., Pettorelli, N., Orme, C. D. L., & Durant, S. M. (2012). Stalk and chase: how hunt stages affect hunting success in Serengeti cheetah. Animal Behaviour, 84(3), 701–706.
  76. Hoefnagels, M. (2015). Biology: concepts and investigations (3rd ed.). McGraw-Hill New York.
  77. Hutchinson, G. E. (1957). The multivariate niche. In Cold Spr. Harb. Symp. Quant. Biol (Vol. 22, pp. 415–421).
  78. Ibanez, S., Gallet, C., & Després, L. (2012). Plant insecticidal toxins in ecological networks. Toxins, 4(4), 228–243.
  79. Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., … Jones, J. I. (2009). Review: Ecological networks–beyond food webs. Journal of Animal Ecology, 78(1), 253–269.
  80. Inoue, J.-I., Noda, S., Hongoh, Y., Ui, S., & Ohkuma, M. (2008). Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes and Environments, 23(1), 94–97.
  81. Jackson, R. R., & Wilcox, R. S. (1993). Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour, 127(1), 21–36.
  82. Jaksić, F. M. (1981). Abuse and misuse of the term“ guild” in ecological studies. Oikos, 397–400.
  83. Jones, M. D., & Smith, S. E. (2004). Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Canadian Journal of Botany, 82(8), 1089–1109.
  84. Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. American Naturalist, 657–677.
  85. Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters, 6(1), 69–81.
  86. Kalinkat, D.-B. G. (2012). Towards an understanding of complexity: How body sizes, preferences and habitat structure constrain predator-prey interactions. Technischen Universität Darmstadt.
  87. Kanaujia, A., & Kushwaha, S. (2013). Vulnerable Vultures of India: Population, Ecology and Conservation. Rare Animals of India. Bentham Publication, 113–144.
  88. Kardong, K. V. (2011). Vertebrates, comparative anatomy, function, evolution (6th ed.). McGraw-Hill New York.
  89. Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13773–13778.
  90. Kéfi, S., Berlow, E. L., Wieters, E. A., Navarrete, S. A., Petchey, O. L., Wood, S. A., … Williams, R. J. (2012). More than a meal… integrating non‐feeding interactions into food webs. Ecology Letters, 15(4), 291–300.
  91. Kolmogorov, A. N. (1936). Sulla teoria di Volterra della lotta per l’esistenza. Giornale Instituto Ital. Attuari, 7, 74–80.
  92. Kurup, A. R., & Kurup, P. A. (2012). Endosymbiotic Actinidic Archaea and Viroids--A Model for Abiogenesis and Viral, Prokaryote, Eukaryotic, Primate and Human Evolution. Advances in Natural Science, 5(1), p131–138.
  93. Kuuluvainen, T. (2009). Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge. AMBIO: A Journal of the Human Environment, 38(6), 309–315.
  94. Kuzyakov, Y., & Xu, X. (2013). Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198(3), 656–669.
  95. Kvitek, R. G. (1991). Sequestered paralytic shellfish poisoning toxins mediate glaucous-winged gull predation on bivalve prey. The Auk, 381–392.
  96. Laurin, G. V., Chan, J. C.-W., Chen, Q., Lindsell, J. A., Coomes, D. A., Guerriero, L., … Valentini, R. (2014). Biodiversity mapping in a tropical West African forest with airborne hyperspectral data. PloS One, 9(6), e97910.
  97. Leung, T. L. F., & Poulin, R. (2008). Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie et Milieu, 58(2), 107.
  98. Liebenberg, L. (2006). Persistence hunting by modern hunter‐gatherers. Current Anthropology, 47(6), 1017–1026.
  99. Liebenberg, L. (2008). The relevance of persistence hunting to human evolution. Journal of Human Evolution, 55(6), 1156–1159.
  100. Lindeman, R. L. (1942). The trophic‐dynamic aspect of ecology. Ecology, 23(4), 399–417.
  101. Litsios, G., Sims, C. A., Wüest, R. O., Pearman, P. B., Zimmermann, N. E., & Salamin, N. (2012). Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evolutionary Biology, 12(1), 1.
  102. Lomolino, M. V, Riddle, B. R., Brown, J. H., & Brown, J. H. (2006). Biogeography. Sinauer Associates Sunderland, MA.
  103. Lotka, A. J. (1910). Contribution to the theory of periodic reactions. The Journal of Physical Chemistry, 14(3), 271–274.
  104. Lotka, A. J. (1920). Analytical note on certain rhythmic relations in organic systems. Proceedings of the National Academy of Sciences, 6(7), 410–415.
  105. Lotka, A. J. (1925). Elements of physical biology.
  106. Lubbock, R. (1980). Why are clownfishes not stung by sea anemones? Proceedings of the Royal Society of London B: Biological Sciences, 207(1166), 35–61.
  107. Machac, A., Graham, C. H., Steppan, S. J., & Bronstein, J. L. (2016). Regional Diversity and Diversification in Mammals. The American Naturalist, 189(1), E000–E000.
  108. Maclaurin, J., & Sterelny, K. (2008). What is biodiversity? University of Chicago Press.
  109. Mahmood, M. T. (2015). Avian raptor evolution: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Genetics, Institute of Fundamental Sciences, Massey University, New Zealand. The Author.
  110. Malthus, T. (1798). An Essay on the Principle of Population. An Essay on the Principle of Population, as it Affects the Future Improvement of Society with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers, 1798, Cosimo. 2013: Inc.
  111. Mantovani, A., & Guberti, V. (1991). Animals as hosts of zoonoses. Annali dell’Istituto Superiore Di Sanita, 28(4), 465–471.
  112. Mappes, J., Marples, N., & Endler, J. A. (2005). The complex business of survival by aposematism. Trends in Ecology & Evolution, 20(11), 598–603.
  113. Marcogliese, D. J. (2004). Parasites: small players with crucial roles in the ecological theater. EcoHealth, 1(2), 151–164.
  114. Martin, R. A., & Hammerschlag, N. (2012). Marine predator–prey contests: ambush and speed versus vigilance and agility. Marine Biology Research, 8(1), 90–94.
  115. Mason, K. A., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology (7th ed.). McGraw-Hill New York.
  116. May, R. M., & Leonard, W. J. (1975). Nonlinear aspects of competition between three species. SIAM Journal on Applied Mathematics, 29(2), 243–253.
  117. Mazzocchi, F. (2008). Complexity in biology. EMBO Reports, 9(1), 10–14.
  118. Mebs, D. (1998). Occurrence and sequestration of toxins in food chains. Toxicon, 36(11), 1519–1522.
  119. Michener, W. K., Baerwald, T. J., Firth, P., Palmer, M. A., Rosenberger, J. L., Sandlin, E. A., & Zimmerman, H. (2001). Defining and unraveling biocomplexity. BioScience, 51(12), 1018–1023.
  120. Mittelbach, G. G. (2012). Community ecology. Sinauer Associates Sunderland, MA.
  121. Molles, M. C. J. (2013). Ecology: concepts and applications (7th ed.). New York: McGraw-Hill New York.
  122. Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259–264.
  123. Motychak, J. E., Brodie Jr, E. D., & Brodie III, E. D. (1999). Evolutionary response of predators to dangerous prey: preadaptation and the evolution of tetrodotoxin resistance in garter snakes. Evolution, 1528–1535.
  124. Mouquet, N., Gravel, D., Massol, F., & Calcagno, V. (2013). Extending the concept of keystone species to communities and ecosystems. Ecology Letters, 16(1), 1–8.
  125. Murphy, K., Ruth, T. K., Hornocker, M., & Negri, S. (2009). Diet and prey selection of a perfect predator. Cougar Ecology and Conservation. University of Chicago Press, Chicago, Illinois, USA, 118–137.
  126. Nishimura, S. I., & Ikegami, T. (1997). Emergence of collective strategies in a prey-predator game model. Artificial Life, 3(4), 243–260.
  127. Nyhart, L. K. (1998). Civic and Economic Zoology in Nineteenth-Century Germany: The“ Living Communities” of Karl Mobius. Isis, 605–630.
  128. Odum, E., & Barrett, G. W. (2004). Fundamentals of Ecology (5th ed.). Cengage Learning.
  129. Ogada, D. L., Keesing, F., & Virani, M. Z. (2012). Dropping dead: causes and consequences of vulture population declines worldwide. Annals of the New York Academy of Sciences, 1249(1), 57–71.
  130. Olson, Z. H., Beasley, J. C., DeVault, T. L., & Rhodes, O. E. (2012). Scavenger community response to the removal of a dominant scavenger. Oikos, 121(1), 77–84.
  131. Ovruski, S., Aluja, M., Sivinski, J., & Wharton, R. (2000). Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: diversity, distribution, taxonomic status and their use in fruit fly biological control. Integrated Pest Management Reviews, 5(2), 81–107.
  132. Packer, C., Scheel, D., & Pusey, A. E. (1990). Why lions form groups: food is not enough. American Naturalist, 1–19.
  133. Parrish, J. K., & Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284(5411), 99–101.
  134. Pasteels, J. M. (2007). Chemical defence, offence and alliance in ants–aphids–ladybirds relationships. Population Ecology, 49(1), 5–14.
  135. Paterson, H. (2005). The competitive Darwin. Paleobiology, 31(S2), 56–76.
  136. Pfennig, D. W., Harcombe, W. R., & Pfennig, K. S. (2001). Frequency-dependent Batesian mimicry. Nature, 410(6826), 323.
  137. Pigot, A. L., & Tobias, J. A. (2013). Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16(3), 330–338.
  138. Poran, N. S., Coss, R. G., & Benjamini, E. L. I. (1987). Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation. Toxicon, 25(7), 767–777.
  139. Prada, C., Hanna, B., Budd, A. F., Woodley, C. M., Schmutz, J., Grimwood, J., … Johnson, K. G. (2016). Empty Niches after Extinctions Increase Population Sizes of Modern Corals. Current Biology.
  140. Price, P. W., Westoby, M., Rice, B., Atsatt, P. R., Fritz, R. S., Thompson, J. N., & Mobley, K. (1986). Parasite mediation in ecological interactions. Annual Review of Ecology and Systematics, 487–505.
  141. Rohde, K. (2006). Nonequilibrium ecology. Cambridge University Press.
  142. Rosenthal, G. G. (2016). Mate Choice: Charting Desire’s Tangled Bank. Current Biology, 26(7), R294–R296.
  143. Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. American Naturalist, 209–223.
  144. Ruxton, G. D., & Houston, D. C. (2003). Could Tyrannosaurus rex have been a scavenger rather than a predator? An energetics approach. Proceedings of the Royal Society of London B: Biological Sciences, 270(1516), 731–733.
  145. Sadava, D., Berenbaum, M., & Hillis, D. (2014). Life the Science of Biology (10th ed.). Sinauer & MacMillian.
  146. Sahney, S., & Benton, M. J. (2008). Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B: Biological Sciences, 275(1636), 759–765.
  147. Salthe, S. N. (2013). Evolution, Convergent. In Encyclopedia of Sciences and Religions (pp. 798–803). Springer.
  148. Scharf, I., Lubin, Y., & Ovadia, O. (2011). Foraging decisions and behavioural flexibility in trap‐building predators: a review. Biological Reviews, 86(3), 626–639.
  149. Schmidt-Nielsen, K. (1997). Animal physiology: adaptation and environment. Cambridge University Press.
  150. Schuster, S., Wöhl, S., Griebsch, M., & Klostermeier, I. (2006). Animal cognition: how archer fish learn to down rapidly moving targets. Current Biology, 16(4), 378–383.
  151. Scogings, C. J., & Hawick, K. A. (2013). Modelling predator camouflage behaviour and tradeoffs in an agent-based animat model. In Proc. IASTED Int. Conf. on Modelling and Simulation (MS’2013).
  152. Seibold, I., & Helbig, A. J. (1995). Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philosophical Transactions of the Royal Society B: Biological Sciences, 350(1332), 163–178.
  153. Selva, N., & Fortuna, M. A. (2007). The nested structure of a scavenger community. Proceedings of the Royal Society of London B: Biological Sciences, 274(1613), 1101–1108.
  154. Shelford, V. E. (1913). Animal communities in temperate America: as illustrated in the Chicago region: a study in animal ecology. University of Chicago Press.
  155. Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22, 115–143.
  156. Simon, E. J., Dickey, J. L., & Reece, J. B. (2013). Essential biology (Pearson).
  157. Skelhorn, J., Rowland, H. M., Speed, M. P., & Ruxton, G. D. (2010). Masquerade: camouflage without crypsis. Science, 327(5961), 51.
  158. Smith, M. D., & Knapp, A. K. (2003). Dominant species maintain ecosystem function with non‐random species loss. Ecology Letters, 6(6), 509–517.
  159. Smith, S. M. (1977). Coral-snake pattern recognition and stimulus generalisation by naive great kiskadees (Aves: Tyrannidae).
  160. Smith, T. B., & Skúlason, S. (1996). Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics, 111–133.
  161. Solomon, E. P., Berg, L. R., & Martin, D. W. (2008). Biology 8th edition. Thomsom Brooks/Cole, USA.
  162. Stankowich, T., & Coss, R. G. (2007). The re-emergence of felid camouflage with the decay of predator recognition in deer under relaxed selection. Proceedings of the Royal Society of London B: Biological Sciences, 274(1607), 175–182.
  163. Starr, C., Evers, C., & Starr, L. (2013). Biology: Today and Tomorrow With Physiology (4th ed.). Brooks/Cole.
  164. Stern, K. R., Bidlack, J. E., & Jansky, S. H. (2008). Introductory Plant Biology (11th ed.). McGraw-Hill New York.
  165. Stoll, A., & Squeo, F. A. (2012). Latin American plant sciences: from early naturalists to modern science. Plant Ecology & Diversity, 5(2), 147–151.
  166. Stuckert, A. M. M., Venegas, P. J., & Summers, K. (2014). Experimental evidence for predator learning and Müllerian mimicry in Peruvian poison frogs (Ranitomeya, Dendrobatidae). Evolutionary Ecology, 28(3), 413–426.
  167. Sugihara, G. (1980). Minimal community structure: an explanation of species abundance patterns. American Naturalist, 770–787.
  168. Summerhayes, V. S., & Elton, C. S. (1923). Bear Island. Journal of Ecology, 11(2), 216–233.
  169. Symula, R., Schulte, R., & Summers, K. (2001). Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proceedings of the Royal Society of London B: Biological Sciences, 268(1484), 2415–2421.
  170. Tamm, C. O. (1992). The evolution of ecosystem thinking in European ecology. In Responses of Forest Ecosystems to Environmental Changes (pp. 5–15). Springer.
  171. Tobias, J. A., Cornwallis, C. K., Derryberry, E. P., Claramunt, S., Brumfield, R. T., & Seddon, N. (2014). Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature, 506(7488), 359–363.
  172. Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son accroissement. correspondance mathématique et physique publiée par a. Quetelet, 10, 113–121.
  173. Volterra, V. (1927). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari.
  174. Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal species living together. J. Cons. Int. Explor. Mer, 3(1), 3–51.
  175. Wagner, S. C. (2012). Keystone species. Nature Education Knowledge, 3(10), 51.
  176. Walker, T. D., & Valentine, J. W. (1984). Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist, 887–899.
  177. Wang, Q., Fan, M., & Wang, K. (2003). Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses. Journal of Mathematical Analysis and Applications, 278(2), 443–471.
  178. Wartofsky, M. W. (2012). Models: Representation and the scientific understanding (Vol. 48). Springer Science & Business Media.
  179. Wayne, R. (2009). Plant Cell Biology (1st ed.). San Diego: Elsevier.
  180. Williams, B. L., Brodie Jr, E. D., & Brodie III, E. D. (2003). Coevolution of deadly toxins and predator resistance: Self-assessment of resistance by garter snakes leads to behavioral rejection of toxic newt prey. Herpetologica, 59(2), 155–163.
  181. Wilsdon, C. (2014). Animal defenses. Infobase Publishing.
  182. Wilson, D. S., & Turelli, M. (1986). Stable underdominance and the evolutionary invasion of empty niches. American Naturalist, 835–850.
  183. Wootton, K. L., & Stouffer, D. B. (2016). Many weak interactions and few strong; food-web feasibility depends on the combination of the strength of species’ interactions and their correct arrangement. Theoretical Ecology, 9(2), 185–195.
  184. Worster, D. (1994). Nature’s economy: a history of ecological ideas. Cambridge University Press.
  185. Wüster, W., Allum, C. S. E., Bjargardóttir, I. B., Bailey, K. L., Dawson, K. J., Guenioui, J., … Niskanen, M. (2004). Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proceedings of the Royal Society of London B: Biological Sciences, 271(1556), 2495–2499.
  186. Zeder, M. A. (2006). Central questions in the domestication of plants and animals. Evolutionary Anthropology: Issues, News, and Reviews, 15(3), 105–117.

La comunidad // Principal // Siguiente

No hay comentarios:

Publicar un comentario