domingo, 27 de noviembre de 2016


  1. Alexe, G., Fuku, N., Bilal, E., Ueno, H., Nishigaki, Y., Fujita, Y., … Bhanot, G. (2007). Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Human Genetics, 121(3-4), 347–356.
  2. Allen, J. A., & Coombs, M. M. (1980). Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA. Nature, 287(5779), 244–245.
  3. Antonopoulos, E., Freisleben, H.-J., Krisnamurti, D. G. B., Estuningtyas, A., Mulyanto, C., Ridwan, R., & Freisleben, S. K. U. (2013). Fractionation and purification of membrane lipids from the archaeon Thermoplasma acidophilum DSM 1728/10217. Separation and Purification Technology, 110, 119–126.
  4. Aristotle. (2014a). History of animals. Retrieved from
  5. Aristotle. (2014b). On the Generation of Animals. Retrieved from
  6. Bardy, S. L., Ng, S. Y. M., & Jarrell, K. F. (2004). Recent advances in the structure and assembly of the archaeal flagellum. Journal of Molecular Microbiology and Biotechnology, 7(1-2), 41–51.
  7. Becker, W. M., Kleinsmith, L. J., & Hardin, J. (2005). The world of the cell. Benjamin-Cummings Publishing Company.
  8. Bellis, M. (2009). History of microscopes. Retrieved June, 29, 2009.
  9. Benfey, O. T. (2007). The conceptual structure of the sciences. In Philosophy of Chemistry: Synthesis of a New Discipline, Boston Studies in the Philosophy and History of Science (pp. 95–117). Springer.
  10. Benton, E. (1974). Vitalism in nineteenth-century scientific thought: A typology and reassessment. Studies in History and Philosophy of Science Part A, 5(1), 17–48.
  11. Bergandi, D. (2011). Multifaceted ecology between organicism, emergentism and reductionism. In Ecology Revisited (pp. 31–43). Springer.
  12. Bersini, H., Stano, P., Luisi, P. L., & Bedau, M. A. (2012). Philosophical and scientific perspectives on emergence. Synthese, 185(2), 165–169.
  13. Black, J., & Black, L. (2012). Microbiology Principles and Explorations (8th ed.). Jefferson City.: Wiley & Sons.
  14. Blanco, D. (2012). Aristas controversiales en la caja negra de Darwin. Lógoi, (8).
  15. Brand, F. N., Kiely, D. K., Kannel, W. B., & Myers, R. H. (1992). Family patterns of coronary heart disease mortality: the Framingham Longevity Study. Journal of Clinical Epidemiology, 45(2), 169–174.
  16. Butlerow, A. (1861). Formation synthétique d’une substance sucrée. CR Acad. Sci, 53, 145–147.
  17. Cabeen, M. T., & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology, 3(8), 601–610.
  18. Castri, L., Melendez-Obando, M., Villegas-Palma, R., Barrantes, R., Raventos, H., Pereira, R., … Madrigal, L. (2008). Mitochondrial polymorphisms are associated both with increased and decreased longevity. Human Heredity, 67(3), 147–153.
  19. Chistiakov, D. A., Sobenin, I. A., Revin, V. V, Orekhov, A. N., & Bobryshev, Y. V. (2014). Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Research International, 2014.
  20. Christie, P. J. (2016). Classic Spotlight: the Awesome Power of Conjugation. Journal of Bacteriology, 198(3), 372.
  21. Clewell, D. B. (2013). Bacterial conjugation. Springer Science & Business Media.
  22. Cloutier, M. J. (1995). Antibiotics: Mechanisms of Action and Acquisition of Resistance--When Magic Bullets Lose Their Magic. American Journal of Pharmaceutical Education, 59(2), 167–172.
  23. Damiano, L. (2012). Co-emergences in life and science: a double proposal for biological emergentism. Synthese, 185(2), 273–294.
  24. Darwin, C. (1859). On the origins of species by means of natural selection. London: Murray.
  25. Darwin, F. (1887). The life and letters of Charles Darwin including an autobiographical chapter edited by his son. London, Murray.
  26. De Benedictis, G., Rose, G., Carrieri, G., De Luca, M., Falcone, E., Passarino, G., … Bertolini, S. (1999). Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. The FASEB Journal, 13(12), 1532–1536.
  27. Denton, M. J., Kumaramanickavel, G., & Legge, M. (2013). Cells as irreducible wholes: the failure of mechanism and the possibility of an organicist revival. Biology & Philosophy, 28(1), 31–52.
  28. Drews, G. (2000). The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews, 24(3), 225–249.
  29. Farley, J. (1972). The spontaneous generation controversy (1859–1880): British and German reactions to the problem of abiogenesis. Journal of the History of Biology, 5(2), 285–319.
  30. Farley, J. (1974). The initial reactions of French biologists to Darwin’s Origin of Species. Journal of the History of Biology, 7(2), 275–300.
  31. Fevrier, B., & Raposo, G. (2004). Exosomes: endosomal-derived vesicles shipping extracellular messages. Current Opinion in Cell Biology, 16(4), 415–421.
  32. Gabaldón, T. (2012). Mitochondrial Origins. In Organelle Genetics (pp. 3–18). Springer.
  33. Gest, H. (2004). The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Notes and Records of the Royal Society, 58(2), 187–201.
  34. Gilbert, S. F., & Sarkar, S. (2000). Embracing complexity: organicism for the 21st century. Developmental Dynamics, 219(1), 1–9.
  35. Goodenough, J., & McGuire, B. (2012). Biology of Humans, Concepts, Applications and Issues (4th ed.). San Francisco: Pearson, Benjamin Cummings.
  36. Gottdenker, P. (1979). Francesco Redi and the fly experiments. Bulletin of the History of Medicine, 53(4), 575.
  37. Gray, M. W. (2012). Mitochondrial evolution. Cold Spring Harbor Perspectives in Biology, 4(9), a011403.
  38. Gray, M. W., & Archibald, J. M. (2012). Origins of mitochondria and plastids. In Genomics of Chloroplasts and Mitochondria (pp. 1–30). Springer.
  39. Grenier, D., & Mayrand, D. (1987). Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infection and Immunity, 55(1), 111–117.
  40. Haeckel, E. (1862). Die Radiolarien (Rhizopoda radiaria): eine Monographie (Vol. 1). Reimer.
  41. Harman, D. (1972). The biologic clock: the mitochondria? Journal of the American Geriatrics Society, 20(4), 145–147.
  42. Harman, D. (2002). Aging: a theory based on free radical and radiation chemistry. Science’s SAGE KE, 2002(37), 14.
  43. Henderson, J. (2012). Vitalism and the Darwin Debate. Science & Education, 1–11.
  44. Henry, F. G. (1999). Anti-Darwinism in France: Science and the Myth of Nation. Nineteenth-Century French Studies, 290–304.
  45. Hooke, R. (2003). 1665 Micrographia. London: Martyn and Allestry.
  46. Hordijk, W., Hein, J., & Steel, M. (2010). Autocatalytic sets and the origin of life. Entropy, 12(7), 1733–1742.
  47. Hoyningen-Huene, P. (1991). Theory of antireductionist arguments: the Bohr case study. In The Problem of Reductionism in Science (pp. 51–70). Springer.
  48. Ivanova, R., Lepage, V., Charron, D., & Schächter, F. (1998). Mitochondrial genotype associated with French Caucasian centenarians. Gerontology, 44(6), 349.
  49. Jacob. F. (1973). La lógica de lo viviente. Biblioteca científica Salvat.
  50. Johnston, C., Martin, B., Fichant, G., Polard, P., & Claverys, J.-P. (2014). Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology, 12(3), 181–196.
  51. Kåhrström, C. T. (2013). Biofilms: Flagella function as mechanosensors. Nature Reviews Microbiology, 11(9), 597.
  52. Kaiser, G. E. (2006). The prokaryotic cell: bacteria. Sizes, shapes, and arrangements of bacteria. Doc Kaiser’s Microbiology Homepage.
  53. Kalanetra, K. M., Huston, S. L., & Nelson, D. C. (2004). Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Applied and Environmental Microbiology, 70(12), 7487–7496.
  54. Kang, H.-J., Feng, Z., Sun, Y., Atwal, G., Murphy, M. E., Rebbeck, T. R., … Hu, W. (2009). Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proceedings of the National Academy of Sciences, 106(24), 9761–9766.
  55. Karimi, A., Karig, D., Kumar, A., & Ardekani, A. M. (2015). Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab on a Chip, 15(1), 23–42.
  56. Karp, G. C. (2010). Cell and Molecular Biology, Concepts and Experiments (6th ed.). USA: Wiley Online Library.
  57. Karp, G. C. (2013). Cell and Molecular Biology, Concepts and Experiments (7th ed.). USA: Wiley Online Library.
  58. König, H. (1988). Archaeobacterial cell envelopes. Canadian Journal of Microbiology, 34(4), 395–406.
  59. Lazcano, A. (2010). Historical development of origins research. Cold Spring Harbor Perspectives in Biology, 2(11), a002089.
  60. Lazzerini-Ospri, L., Stano, P., Luisi, P., & Marangoni, R. (2012). Characterization of the emergent properties of a synthetic quasi-cellular system. BMC Bioinformatics, 13(Suppl 4), S9.
  61. Lewin, R. (1999). Complexity: Life at the edge of chaos. University of Chicago Press.
  62. Malaterre, C. (2013). Life as an emergent phenomenon: From an alternative to vitalism to an alternative to reductionism. In Vitalism and the Scientific Image in Post-Enlightenment Life Science, 1800-2010 (pp. 155–178). Springer.
  63. Mandavilli, B. S., Santos, J. H., & Van Houten, B. (2002). Mitochondrial DNA repair and aging. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 509(1), 127–151.
  64. marquis Du Trochet, H. (1824). Recherches anatomiques et physiologiques sur la structure intime des animaux et des végétaux, et sur leur motilité. JB Baillière.
  65. Mashburn‐Warren, L. M., & Whiteley, M. (2006). Special delivery: vesicle trafficking in prokaryotes. Molecular Microbiology, 61(4), 839–846.
  66. Mayr, E. (1997). This is biology: the science of the living world. Universities Press.
  67. Mazzarello, P. (1999). A unifying concept: the history of cell theory. Nature Cell Biology, 1(1), E13–E15.
  68. Mazzocchi, F. (2008). Complexity in biology. EMBO Reports, 9(1), 10–14.
  69. Miller, S. L., & Lazcano, A. (2002). Formation of the building blocks of life. Life’s Origin: The Beginnings of Biological Evolution. California University Press, Berkeley, 78–112.
  70. Miquel, J., Economos, A. C., Fleming, J., & Johnson, J. E. (1980). Mitochondrial role in cell aging. Experimental Gerontology, 15(6), 575–591.
  71. Morowitz, H. J., Srinivasan, V., & Smith, E. (2010). Ligand field theory and the origin of life as an emergent feature of the periodic table of elements. The Biological Bulletin, 219(1), 1–6.
  72. Morris, P. J. (1997). Louis Agassiz’s arguments against Darwinism in his additions to the French translation of the Essay on Classification. Journal of the History of Biology, 30(1), 121–134.
  73. Nadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology.
  74. Neubert, D., Hopfenmüller, W., & Fuchs, G. (1981). Manifestation of carcinogenesis as a stochastic process on the basis of an altered mitochondrial genome. Archives of Toxicology, 48(2-3), 89–125.
  75. Nezelof, C. (2003). Henri dutrochet (1776–1847): an unheralded discoverer of the cell. Annals of Diagnostic Pathology, 7(4), 264–272.
  76. Nunes-Alves, C. (2015). Bacterial evolution: Resurrecting motility. Nature Reviews Microbiology, 13(4), 187.
  77. Pallen, M. J. (2011). Time to recognise that mitochondria are bacteria? Trends in Microbiology, 19(2), 58–64.
  78. Parke, E. C. (2014). Flies from meat and wasps from trees: Reevaluating Francesco Redi’s spontaneous generation experiments. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 34–42.
  79. Parmon, V. N. (2008). The Prebiotic Phase of the Origin of Life as Seen by a Physical Chemist. In Biosphere Origin and Evolution (pp. 89–101). Springer.
  80. Parmon, V., & Snytnikov, V. (2002). The first Step of Evolution from the View Point of chemical Catalysis. In 34th COSPAR Scientific Assembly (Vol. 34, p. 489).
  81. Peretó, J., Bada, J. L., & Lazcano, A. (2009). Charles Darwin and the origin of life. Origins of Life and Evolution of Biospheres, 39(5), 395–406.
  82. Price, G. B., Modak, S. P., & Makinodan, T. (1971). Age-associated changes in the DNA of mouse tissue. Science, 171(3974), 917–920.
  83. Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology, 200(4), 373–383.
  84. Rhoades, R. A., & Bell, D. R. (2013). Medical Physiology, Principles for Clinical Medicine (4th ed.). Baltimore: Lippincott Williams & Wilkins.
  85. Rieppel, O. (2011). Ernst Haeckel (1834–1919) and the monophyly of life. Journal of Zoological Systematics and Evolutionary Research, 49(1), 1–5.
  86. Roll-Hansen, N. (2000). The application of complementarity to biology: From Niels Bohr to Max Delbrück. Historical Studies in the Physical and Biological Sciences, 417–442.
  87. Ross, O. A., McCormack, R., Curran, M. D., Duguid, R. A., Barnett, Y. A., Rea, I. M., & Middleton, D. (2001). Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Experimental Gerontology, 36(7), 1161–1178.
  88. Ruestow, E. G. (1984). Leeuwenhoek and the campaign against spontaneous generation. Journal of the History of Biology, 17(2), 225–248.
  89. Rusch, H., & Frey, U. (2013). Biological and Experimental Perspectives on Self-Interest: Reciprocal Altruism and Genetic Egoism. In Handbook of the Philosophical Foundations of Business Ethics (pp. 313–335). Springer.
  90. Sadava, D., Heller, C., Berenbaum, M., & Hillis, D. (2014). 4.2 How and Where Did the Small Molecules of Life Originate? In Life The Science of Biology (10th ed., p. 68). Sinauer & MacMillian.
  91. Sadava, D., Heller, C., Orians, G. H., Purves, W. k, & Hillis, D. (2008). Life, the science of biology (8th ed.). Sinauder.
  92. Schatzki, S. C. (2014). The Microscope. American Journal of Roentgenology, 202(1), 246–247.
  93. Schwann, T. (1839). Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen: mit 4 Kupfertafeln. Reimer.
  94. Sebastián, D., Acín-Pérez, R., & Morino, K. (2016). Mitochondrial Health in Aging and Age-Related Metabolic Disease. Oxidative Medicine and Cellular Longevity, 2016.
  95. Skloot, R., & Turpin, B. (2010). The immortal life of Henrietta Lacks.
  96. Smith, K. R., Hanson, H. A., Mineau, G. P., & Buys, S. S. (2012). Effects of BRCA1 and BRCA2 mutations on female fertility. Proceedings of the Royal Society of London B: Biological Sciences, 279(1732), 1389–1395.
  97. Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18, 96–104.
  98. Solomon, E. P., Berg, L. R., & Martin, D. W. (2008). Biology 8th edition. Thomsom Brooks/Cole, USA.
  99. Spaargaren, D. H. (1985). Origin of life: Oceanic genesis, panspermia or Darwin’s “warm little pond”? Experientia, 41(6), 719–727.
  100. Strick, J. E. (2009a). Darwin and the origin of life: public versus private science. Endeavour, 33(4), 148–151.
  101. Strick, J. E. (2009b). Sparks of life: Darwinism and the Victorian debates over spontaneous generation. Harvard University Press.
  102. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., … Horikoshi, K. (2008). Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences, 105(31), 10949–10954.
  103. Thomas, N. A., Bardy, S. L., & Jarrell, K. F. (2001). The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiology Reviews, 25(2), 147–174.
  104. Tortora, G., Funke, B., & Case, C. (2010). Microbiology an introduction (10th ed.). San Francisco: Pearson, Benjamin Cummings.
  105. Vlaardingerbroek, B. (2012). The Sorites Paradox,“Life,” and Abiogenesis. Evolution: Education and Outreach, 1–3.
  106. Volkmann, H. (1966). Ernst Abbe and his work. Applied Optics, 5(11), 1720–1731.
  107. Wheeler, K. T., & Lett, J. T. (1974). On the possibility that DNA repair is related to age in non-dividing cells. Proceedings of the National Academy of Sciences, 71(5), 1862–1865.
  108. Wolfe, C. T. (2007). The Return of Vitalism: Canguilhem and French Biophilosophy in the 1960s.
  109. Wunderlich, V., Schütt, M., Böttger, M., & Graffi, A. (1970). Preferential alkylation of mitochondrial deoxyribonucleic acid by N-methyl-N-nitrosourea. Biochemical Journal, 118(1), 99–109.
  110. Yang, L. L., & Haug, A. (1979). Structure of membrane lipids and physico-biochemical properties of the plasma membrane from Thermoplasma acidophilum, adapted to growth at 37 C. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 573(2), 308–320.
  111. Zak, M., Zbilut, J. P., & Meyers, R. E. (2008). From instability to intelligence: complexity and predictability in nonlinear dynamics (Vol. 49). Springer Science & Business Media. 

La célula // Principal // Siguiente

No hay comentarios:

Publicar un comentario