jueves, 6 de octubre de 2016


  1. BouJaoude, S. B., & Jurdak, M. E. (2010). Integrating physics and math through microcomputer-based laboratories (MBL): Effects on discourse type, quality, and mathematization. International Journal of Science and Mathematics Education, 8(6), 1019–1047.
  2. Buiatti, M., & Longo, G. (2013). Randomness and multilevel interactions in biology. Theory in Biosciences, 132(3), 139–158.
  3. Ciardi, M. (2000). Kant’s Reception of Lavoisier’s “New Chemistry.”
  4. Cox, C., Reynolds, B., Schunn, C., & Schuchardt, A. (2016). Using Mathematics and Engineering to Solve Problems in Secondary Level Biology. Journal of STEM Education: Innovations and Research, 17(1), 22.
  5. Craig, L. R. (2015). Neo-Darwinism and Evo-Devo: An Argument for Theoretical Pluralism in Evolutionary Biology. Perspectives on Science.
  6. de Berg, K. C. (1992). Mathematics in science: The role of the history of science in communicating the significance of mathematical formalism in science. Science & Education, 1(1), 77–87.
  7. Epstein, J. M. (1997). Nonlinear dynamics, mathematical biology, and social science. Westview Press.
  8. Etherington, I. M. H. (1941). II.—Non-Associative Algebra and the Symbolism of Genetics. Proceedings of the Royal Society of Edinburgh. Section B. Biology, 61(01), 24–42.
  9. Fairbanks, D. J., & Rytting, B. (2001). Mendelian controversies: a botanical and historical review. American Journal of Botany, 88(5), 737–752.
  10. Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7(1), 17–52.
  11. Harwood, J. (2000). The rediscovery of Mendelism in agricultural context: Erich von Tschermak as plant-breeder. Comptes Rendus de l’Académie Des Sciences-Series III-Sciences de La Vie, 323(12), 1061–1067.
  12. Huckabee, C. J. (1989). Influences on Mendel. The American Biology Teacher, 84–88.
  13. Kroes, P. A. (1988). Newton’s Mathematization of Physics in Retrospect. In Newton’s Scientific and Philosophical Legacy (pp. 253–267). Springer.
  14. Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits (Vol. 1). Sinauer Sunderland, MA.
  15. Magnello, M. E. (1998). Karl Pearson’s mathematization of inheritance: from ancestral heredity to Mendelian genetics (1895–1909). Annals of Science, 55(1), 35–94.
  16. MARK, H. H. (1966). Gregor Johann Mendel on Pisum sativum: A Centennial. Archives of Ophthalmology, 76(2), 287.
  17. Marshall, J. A. R. (2015). Social evolution and inclusive fitness theory: an introduction. Princeton University Press.
  18. Martinez, M. G. (2014). Pruebas de normalidad. Retrieved October 2, 2016, from https://www.youtube.com/watch?v=KZEBU8gV3tY
  19. Mayo, O. (2008). A century of Hardy–Weinberg equilibrium. Twin Research and Human Genetics, 11(03), 249–256.
  20. McDonald, J. H. (2015). Handbook of Biological Statistics. (U. of Delaware, Ed.). Baltimore: Sparky House. Retrieved from http://www.biostathandbook.com/linearregression.html
  21. Morgan, T. H. (1916). A Critique of the Theory of Evolution. Princeton University Press.
  22. Murray, J. D. (2001). Mathematical Biology. II Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag New York Incorporated.
  23. Murray, J. D. (2002). Mathematical biology I: an introduction, Vol. 17 of interdisciplinary applied mathematics. Springer, New York, NY, USA,.
  24. Neale, M. C., & Cardon, L. R. (1992). Biometrical genetics. In Methodology for Genetic Studies of Twins and Families (pp. 55–70). Springer.
  25. Pearson, K. (1896). Mathematical Contributions to the Theory of Evolution.--On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs. Proceedings of the Royal Society of London, 60(359-367), 489–498.
  26. Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 195, 1–405.
  27. Restrepo, G. (2013). To mathematize, or not to mathematize chemistry. Foundations of Chemistry, 15(2), 185–197.
  28. Scheurer, P. B., & Debrock, G. (1988). Newton’s scientific and philosophical legacy (Vol. 123). Springer Science & Business Media.
  29. Shapin, S. (1988). Robert Boyle and mathematics: reality, representation, and experimental practice. Science in Context, 2(01), 23–58.
  30. Shapin, S. (1996). The scientific revolution. University of Chicago Press.
  31. Stigler, S. (2006). How Ronald Fisher became a mathematical statistician. Mathématiques et Sciences Humaines. Mathematics and Social Sciences, (176), 23–30.
  32. Taborsky, M., Frommen, J. G., & Riehl, C. (2016). The evolution of cooperation based on direct fitness benefits. Phil. Trans. R. Soc. B, 371(1687), 20150472.
  33. van Hemmen, J. L. (2007). Biology and mathematics: A fruitful merger of two cultures. Biological Cybernetics, 97(1), 1–3.

No hay comentarios:

Publicar un comentario