domingo, 26 de junio de 2016

17 REFERENCIAS BIBLIOGRÁFICAS DE SISTEMA RESPIRATORIO


  1. Anam, K., & Susilaningsih, D. (2015). HYDROGEN PRODUCTION USING Rhodobium Marinum IN MILK LIQUID WASTE. Jurnal Teknologi Indonesia (JTI), 38(1).
  2. Aragno, M., & Schlegel, H. G. (1981). The hydrogen-oxidizing bacteria. In The prokaryotes (pp. 865–893). Springer.
  3. Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50(1), 601–639.
  4. Atangana, A., Khasa, D., Chang, S., & Degrande, A. (2014). Biological Nitrogen Fixation and Mycorrhizal Associations in Agroforestry. In Tropical Agroforestry (pp. 173–202). Springer.
  5. Averof, M., & Cohen, S. M. (1997). Evolutionary origin of insect wings from ancestral gills. Nature, (385), 627–630.
  6. Banet, E., & Núñez, F. (1990). Esquemas conceptuales de los alumnos sobre la respiración. Enseñanza de Las Ciencias, 8(2), 105–110.
  7. Barton, L. (2013). Sulfate-reducing bacteria (Vol. 8). Springer Science & Business Media.
  8. Benner, S. A., Ellington, A. D., & Tauer, A. (1989). Modern metabolism as a palimpsest of the RNA world. Proceedings of the National Academy of Sciences, 86(18), 7054–7058.
  9. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2006). Biochemistry (6th ed.). Freeman.
  10. Black, J., & Black, L. (2012). Microbiology Principles and Explorations (8th ed.). Jefferson City.: Wiley & Sons.
  11. Boxshall, G. A. (2004). The evolution of arthropod limbs. Biological Reviews, 79(02), 253–300.
  12. Brackenbury, J. H. (1971). Airflow dynamics in the avian lung as determined by direct and indirect methods. Respiration Physiology, 13(3), 319–329.
  13. Brito, P. M., Meunier, F. J., Clement, G., & Geffard Kuriyama, D. (2010). The histological structure of the calcified lung of the fossil coelacanth Axelrodichthys araripensis (Actinistia: Mawsoniidae). Palaeontology, 53(6), 1281–1290.
  14. Brusca, R., Brusca, G. J., & Haver, N. J. (2003). Invertebrates (2nd ed.). Sinauer Associates.
  15. Buick, R. (2008). When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1504), 2731–2743.
  16. Bult, H., Boeckxstaens, G. E., Pelckmans, P. A., Jordaens, F. H., Van Maercke, Y. M., & Herman, A. G. (1990). Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature, 345(6273), 346–347.
  17. Burggren, W. W., & Johansen, K. (1986). Circulation and respiration in lungfishes (Dipnoi). Journal of Morphology, 190(S1), 217–236.
  18. Campbell, M. K., & Farrell, S. O. (2012). Biochemistry (7th ed.). Canadá: Brooks/Cole.
  19. Cao, M., Marshall, S., & Gregson, K. (1996). Global carbon exchange and methane emissions from natural wetlands: Application of a process‐based model. Journal of Geophysical Research: Atmospheres, 101(D9), 14399–14414.
  20. Carlile, M., Watkinson, S., & Gooday, G. (2001). The fungi (2nd ed.). San Diego: Academic Press.
  21. Carrano, M. T., Krause, D. W., O’Connor, P. M., & Sampson, S. D. (2009). Case 3487 Megalosaurus crenatissimus Depéret, 1896 (currently Majungasaurus crenatissimus; Dinosauria, Theropoda): proposed replacement of the holotype by a neotype. Bulletin of Zoological Nomenclature, 66, 3.
  22. Carroll, R. L. (2005). Palaeontology: Between water and land. Nature, 437(7055), 38–39.
  23. Casper, P., Maberly, S. C., Hall, G. H., & Finlay, B. J. (2000). Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 49(1), 1–19.
  24. Clack, J. A. (2002). The dermal skull roof of Acanthostega gunnari, an early tetrapod from the Late Devonian. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 93(01), 17–33.
  25. Clark-Hachtel, C. M., & Tomoyasu, Y. (2016). Exploring the origin of insect wings from an evo-devo perspective. Current Opinion in Insect Science, 13, 77–85.
  26. Cohan, F. M., & Koeppel, A. F. (2008). The origins of ecological diversity in prokaryotes. Current Biology, 18(21), R1024–R1034.
  27. Conrad, R. (1988). Biogeochemistry and ecophysiology of atmospheric CO and H2. In Advances in microbial ecology (pp. 231–283). Springer.
  28. Cupello, C., Brito, P. M., Herbin, M., Meunier, F. J., Janvier, P., Dutel, H., & Clément, G. (2015). Allometric growth in the extant coelacanth lung during ontogenetic development. Nature Communications, 6.
  29. Damen, W. G. M., Saridaki, T., & Averof, M. (2002). Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Current Biology, 12(19), 1711–1716.
  30. De Duve, C., & Pizano, M. (1995). Polvo vital: origen y evolución de la vida en la tierra. Norma, Bogotá.
  31. Donnellan, S. C., Foster, R., Junge, C., Huveneers, C., Rogers, P., Kilian, A., & Bertozzi, T. (2015). Fiddling with the proof: the Magpie Fiddler Ray is a colour pattern variant of the common Southern Fiddler Ray (Rhinobatidae: Trygonorrhina). Zootaxa, 3981(3), 367–384.
  32. Drews, G. (2000). The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiology Reviews, 24(3), 225–249.
  33. Duncker, H.-R. (1972). Structure of avian lungs. Respiration Physiology, 14(1-2), 44–63.
  34. Duncker, H.-R. (2004). Vertebrate lungs: structure, topography and mechanics: A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Respiratory Physiology & Neurobiology, 144(2), 111–124.
  35. Dunfield, P. F., & Dedysh, S. N. (2014). Methylocella: a gourmand among methanotrophs. Trends in Microbiology, 22(7), 368–369.
  36. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., … Holland, E. A. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70(2), 153–226.
  37. Gans, C. (1970). Respiration in early tetrapods-the frog is a red herring. Evolution, 24(4), 723–734.
  38. Gans, C. (1997). The late Paleozoic atmosphere and the ecological and evolutionary physiology of tetrapods. Amniote Origins: Completing the Transition to Land, 141.
  39. García Zaforas, A. M. (1991). Estudio llevado a cabo sobre representaciones de la respiración celular en los alumnos de bachillerato y COU. Enseñanza de Las Ciencias, 9(2), 129–134.
  40. Goodenough, J., & McGuire, B. (2012). Biology of Humans, Concepts, Applications and Issues (4th ed.). San Francisco: Pearson, Benjamin Cummings.
  41. Graham, J. B., & Lee, H. J. (2004). Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiological and Biochemical Zoology, 77(5), 720–731.
  42. Gusarov, I., Shatalin, K., Starodubtseva, M., & Nudler, E. (2009). Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science, 325(5946), 1380–1384.
  43. Hart, M. H. (1978). The evolution of the atmosphere of the Earth. Icarus, 33(1), 23–39.
  44. Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 903–915.
  45. Islam, T., Torsvik, V., Larsen, Ø., Bodrossy, L., Øvreås, L., & Birkeland, N.-K. (2016). Acid-tolerant moderately thermophilic methanotrophs of the class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Frontiers in Microbiology, 7, 851.
  46. Johnson, C. (2013). Axolotl paedomorphosis: a comparison of juvenile, metamorphic, and paedomorphic Ambystoma mexicanum brain gene transcription.
  47. Kardong, K. V. (2011). Vertebrates, comparative anatomy, function, evolution (6th ed.). McGraw-Hill New York.
  48. Karp, G. C. (2010). Cell and Molecular Biology, Concepts and Experiments (6th ed.). USA: Wiley Online Library.
  49. Karp, G. C. (2013a). Cell and Molecular Biology, Concepts and Experiments (7th ed.). USA: Wiley Online Library.
  50. Karp, G. C. (2013b). Gene Expression: From Transcription to Translation. In Cell and Molecular Biology Concepts and Experiments (7th ed., pp. 483–544). USA: Wiley Online Library.
  51. Keating, C. (2015). Hydrolysis, methanogenesis and bioprocess performance during low-temperature anaerobic digestion of dilute wastewater.
  52. Kim, S. Y., Pramanik, P., Bodelier, P. L. E., & Kim, P. J. (2014). Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PloS One, 9(12), e113593.
  53. Kneip, C., Lockhart, P., Voß, C., & Maier, U.-G. (2007). Nitrogen fixation in eukaryotes–new models for symbiosis. BMC Evolutionary Biology, 7(1), 1.
  54. Kowalchuk, G. A., & Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485–529.
  55. Kucey, R. M. N., & Paul, E. A. (1982). Carbon flow, photosynthesis, and N 2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biology and Biochemistry, 14(4), 407–412.
  56. Kuethe, D. O. (1988). Fluid mechanical valving of air flow in bird lungs. Journal of Experimental Biology, 136(1), 1–12.
  57. Kump, L. R. (2008). The rise of atmospheric oxygen. Nature, 451(7176), 277–278.
  58. Kuroda, K., Hatamoto, M., Nakahara, N., Abe, K., Takahashi, M., Araki, N., & Yamaguchi, T. (2015). Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge. Microbial Ecology, 69(3), 586–596.
  59. Kurup, A. R., & Kurup, P. A. (2012). Endosymbiotic Actinidic Archaea and Viroids--A Model for Abiogenesis and Viral, Prokaryote, Eukaryotic, Primate and Human Evolution. Advances in Natural Science, 5(1), p131–138.
  60. Laurin, M., Meunier, F. J., Germain, D., & Lemoine, M. (2007). A microanatomical and histological study of the paired fin skeleton of the Devonian sarcopterygian Eusthenopteron foordi. Journal of Paleontology, 81(01), 143–153.
  61. Limaye, A. (2012). Drishti-volume exploration and presentation tool. In Proc Spie (Vol. 8506, p. 85060X–85060X).
  62. Maina, J. N. (2000). Comparative respiratory morphology: themes and principles in the design and construction of the gas exchangers. The Anatomical Record, 261(1), 25–44.
  63. Maina, J. N. (2006). Development, structure, and function of a novel respiratory organ, the lung‐air sac system of birds: to go where no other vertebrate has gone. Biological Reviews, 81(4), 545–579.
  64. Maina, J. N., & Nathaniel, C. (2001). A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. Journal of Experimental Biology, 204(13), 2313–2330.
  65. Mann, M., & Treagust, D. F. (1998). A pencil and paper instrument to diagnose students’ conceptions of breathing, gas exchange and respiration. Australian Science Teachers Journal, 44(2), 55.
  66. Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 56–66.
  67. Matassa, S., Boon, N., & Verstraete, W. (2015). Resource recovery from used water: The manufacturing abilities of hydrogen-oxidizing bacteria. Water Research, 68, 467–478.
  68. Medved, V., Marden, J. H., Fescemyer, H. W., Der, J. P., Liu, J., Mahfooz, N., & Popadić, A. (2015). Origin and diversification of wings: Insights from a neopteran insect. Proceedings of the National Academy of Sciences, 112(52), 15946–15951.
  69. Mora-Ravelo, S. G., Reyes, F. G., Moreno, J. P., Chávez, L. T., & de la Isla, M. de L. (2013). Dinamic of bacteria desnitrificants and nitrificants in the rizospheric of wheat with slow release of fertilizer, irrigated with waste or well water. Advances in Microbiology, 3(04), 343.
  70. Moreira, R., Schütz, M. K., Libert, M., Tribollet, B., & Vivier, V. (2014). Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations. Bioelectrochemistry, 97, 69–75.
  71. Ning, X. Q., Qiao, W. W., Zhang, L., & Gao, X. (2013). Applications of Microcalorimetry in Environmental Sciences: A Review. Asian Journal of Chemistry, 25(16), 8838.
  72. O’Connor, P. M., & Claessens, L. P. A. M. (2005). Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature, 436(7048), 253–256.
  73. Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313), 734–740.
  74. Petro, S. (2010). Fermentation in the Yeast Saccharomyces cerevisiae. PDF Article Http://phobos. Ramapo. Edu/~ spetro/lab_pdf/Fermlab. Pdf.
  75. Ragsdale, S. W. (2016). Targeting methanogenesis with a nitrooxypropanol bullet. Proceedings of the National Academy of Sciences, 201606107.
  76. Raich, J. W., & Potter, C. S. (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9(1), 23–36.
  77. Rhoades, R. A., & Bell, D. R. (2013). Medical Physiology, Principles for Clinical Medicine (4th ed.). Baltimore: Lippincott Williams & Wilkins.
  78. Ruben, J. A., & Boucot, A. J. (1989). The origin of the lungless salamanders (Amphibia: Plethodontidae). American Naturalist, 161–169.
  79. Ryan, F. J., & Schneider, L. K. (1947). The relation of the bacterial production of ammonia gas to the growth of other microorganisms. Journal of Bacteriology, 54(2), 209.
  80. Sadava, D., Berenbaum, M., & Hillis, D. (2014). Life the Science of Biology (10th ed.). Sinauer & MacMillian.
  81. Sadler, T. W. (2012). Medical Embryology. (C. Taylor, Ed.) (12th ed.). Baltimore: Lippincott Williams & Wilkins.
  82. Saminathan, M., Sieo, C. C., Gan, H. M., Abdullah, N., Wong, C. M. V. L., & Ho, Y. W. (2016). Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Animal Feed Science and Technology, 216, 146–160.
  83. Schachner, E. R., Lyson, T. R., & Dodson, P. (2009). Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology. The Anatomical Record, 292(9), 1501–1513.
  84. Seymour, J., & Longden, B. (1991). Respiration—that’s breathing isn't it? Journal of Biological Education, 25(3), 177–183.
  85. Smith, S. E., & Daft, M. J. (1977). Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-mycorrhizal Medicago sativa. Functional Plant Biology, 4(3), 403–413.
  86. Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., & de Haan, C. (2006). Livestock’s long shadow: environmental issues and options. Food & Agriculture Org.
  87. Stern, K. R., Bidlack, J. E., & Jansky, S. H. (2008). Introductory Plant Biology (11th ed.). McGraw-Hill New York.
  88. Sudhamsu, J., & Crane, B. R. (2009). Bacterial nitric oxide synthases: what are they good for? Trends in Microbiology, 17(5), 212–218.
  89. Taurog, A., Oliver, C., Eskay, R. L., Porter, J. C., & McKenzie, J. M. (1974). The role of TRH in the neoteny of the Mexican axolotl (Ambystoma mexicanum). General and Comparative Endocrinology, 24(3), 267–279.
  90. Tavormina, P. L., Hatzenpichler, R., McGlynn, S., Chadwick, G., Dawson, K. S., Connon, S. A., & Orphan, V. J. (2015). Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the “deep sea-1”clade of marine methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 65(1), 251–259.
  91. Torday, J. S. (2014). On the evolution of development. Trends in Developmental Biology, 8, 17.
  92. Tortora, G., Funke, B., & Case, C. (2010). Microbiology an introduction (10th ed.). San Francisco: Pearson, Benjamin Cummings.
  93. Wallace, R. J., Rooke, J. A., Duthie, C.-A., Hyslop, J. J., Ross, D. W., McKain, N., … Roehe, R. (2014). Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 4.
  94. Wayne, R. (2009). Plant Cell Biology (1st ed.). San Diego: Elsevier.
  95. West, J. B. (1965). Ventilation/blood flow and gas exchange.
  96. Whalen, S. C. (2005). Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science, 22(1), 73–94.

No hay comentarios:

Publicar un comentario