miércoles, 13 de mayo de 2015


  1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2015). Molecular biology of the cell (5th ed.). Garland Science.
  2. Belk, C., & Maier, V. B. (2013). Biology Science for Life with physiology. (Pearson, Ed.) (4th ed.).
  3. Campbell, M. K., & Farrell, S. O. (2009). Biochemistry (6th ed.). USA: Thomsom Brooks/Cole.
  4. Campbell, M. K., & Farrell, S. O. (2012). Biochemistry (7th ed.). Canadá: Brooks/Cole.
  5. Cole, K. S. (1972). Membranes, ions and impulses: a chapter of classical biophysics (Vol. 5). Univ of California Press.
  6. Coskun, Ü., & Simons, K. (2010). Membrane rafting: from apical sorting to phase segregation. Febs Letters, 584(9), 1685–1693.
  7. Cox, M. M., Doudna, J. A., & O’Donnell, M. (2012). Molecular biology (1st ed.). Freeman.
  8. CRB. (1906). The Dynamics of Living Matter. Botanical Gazette, 41(6), 449–450.
  9. Danielli, J. F., & Davson, H. (1935). A contribution to the theory of permeability of thin films. Journal of Cellular Physiology, 5(4), 495–508.
  10. Davson, H., & Danielli, J. F. (1943). The permeability of natural membranes. The Permeability of Natural Membranes.
  11. Edidin, M. (2003). Lipids on the frontier: a century of cell-membrane bilayers. Nature Reviews Molecular Cell Biology, 4(5), 414–418.
  12. Frye, L. D., & Edidin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. Journal of Cell Science, 7(2), 319–335.
  13. Glynn, I. M., Hoffman, J. F., & Lew, V. L. (1971). Some’partial reactions' of the sodium pump. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 262(842), 91–102.
  14. Gorter, E., & Grendel, F. (1925). On bimolecular layers of lipoids on the chromocytes of the blood. The Journal of Experimental Medicine, 41(4), 439.
  15. Gupta, G., & Surolia, A. (2010). Glycosphingolipids in microdomain formation and their spatial organization. FEBS Letters, 584(9), 1634–1641.
  16. Hamlyn, J. M., Harris, D. W., Clark, M. A., Rogowski, A. C., White, R. J., & Ludens, J. H. (1989). Isolation and characterization of a sodium pump inhibitor from human plasma. Hypertension, 13(6 Pt 2), 681–689.
  17. Hoefnagels, M. (2015). Biology: concepts and investigations (3rd ed.). McGraw-Hill New York.
  18. Jacobs, M. H. (1962). Early osmotic history of the plasma membrane. Circulation, 26(5), 1013–1021.
  19. Jørgensen, P. L. (1974). Isolation and characterization of the components of the sodium pump. Quarterly Reviews of Biophysics, 7(02), 239–274.
  20. Karp, G. C. (2013). Cell and Molecular Biology, Concepts and Experiments (7th ed.). USA: Wiley Online Library.
  21. Kleinzeller, A. (1997). Ernest Overton’s contribution to the cell membrane concept: a centennial appreciation. Physiology, 12(1), 49–53.
  22. Kuhn, T. S. (1970). The structure of scientific revolutions, 2nd. Chicago: Univ. of Chicago Pr.
  23. Lakatos, I. (1978). The methodology of scientific research programmes. Cambridge University Press.
  24. Latorre, R. (1996). Biofísica y fisiología celular. Universidad de Sevilla.
  25. Leabu, M. (2013). The still valid fluid mosaic model for molecular organization of biomembranes: accumulating data confirm it. Discoveries, 1(1), e7.
  26. Ling, G. (2007). History of the membrane (pump) theory of the living cell from its beginning in mid-19th century to its disproof 45 years ago--though still taught worldwide today as established truth. Physiological Chemistry and Physics and Medical NMR, 39(1), 1.
  27. Ling, G. (2012). In search of the physical basis of life. Springer Science & Business Media.
  28. Ling, G. N. (2001). Life at the cell and below-cell level: The hidden history of a fundamental revolution in biology. Pacific Press New York, NY, USA:
  29. Lipnick, R. L. (2013). Studies of narcosis: charles ernest overton. Springer Science & Business Media.
  30. Mackean, D. G., & Hayward, D. (2014). Biology (3rd ed.). IGCSE Cambridge.
  31. Mader, S. S. (2010). Biology (10th ed.). McGraw-Hill Education.
  32. Mader, S. S., & Windelspecht, M. (2015). Biology (12th ed.). McGraw-Hill Education.
  33. Mader, S. S., & Windelspecht, M. (2018). Essentials of biology (5th ed.). McGraw-Hill Education.
  34. Mason, E. A. (1991). From pig bladders and cracked jars to polysulfones: an historical perspective on membrane transport. Journal of Membrane Science, 60(2-3), 125–145.
  35. Mason, K. A., Losos, J. B., Singer, S. R., & Raven, P. H. (2014). Biology (7th ed.). McGraw-Hill New York.
  36. Morange, M. (2013). What history tells us XXX. The emergence of the fluid mosaic model of membranes. Journal of Biosciences, 38(1), 3–7.
  37. Mueller, P., Rudin, D. O., Tien, H. T., & Wescott, W. C. (1962). Reconstitution of excitable cell membrane structure in vitro. Circulation, 26(5), 1167–1171.
  38. Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V., & Weil, A. (2012). Harpers Illustrated Biochemistry (29th ed.). McGraw-Hill Medical.
  39. Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J., & Johnson, G. T. (2017). Cell Biology (3rd ed.). Elsevier.
  40. Quinton, P. M., Wright, E. M., & Tormey, J. M. (1973). Localization of sodium pumps in the choroid plexus epithelium. The Journal of Cell Biology, 58(3), 724.
  41. Reece, J. B., Urry, L. A., Wasserman, S. A., Cain, M. L., Minorsky, P. V, & Jackson, R. B. (2014). Campbell Biology (10th ed.). Pearson Higher Ed.
  42. Repke, K. R. H., & Schönfeld, W. (1984). Na+/K+-ATPase as the digitalis receptor. Trends in Pharmacological Sciences, 5, 393–397.
  43. Rinzel, J. (1990). Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update. Bulletin of Mathematical Biology, 52(1-2), 5–23.
  44. Robertson, J. D. (1956). The ultrastructure of a reptilian myoneural junction. The Journal of Biophysical and Biochemical Cytology, 2(4), 381.
  45. Rothstein, A. (1978). The cell membrane—A short historical perspective. Current Topics in Membranes and Transport, 11, 1–13.
  46. Sadava, D., Berenbaum, M., & Hillis, D. (2014). Life the Science of Biology (10th ed.). Sinauer & MacMillian.
  47. Simon, E., Reece, J., & Dickey, J. (2013). Essential biology with physiology (4th ed.). Pearson.
  48. Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds, 7–47.
  49. Solomon, E., Martin, C., Martin, D. W., & Berg, L. R. (2014). Biology (10th ed.). Cengage Learning.
  50. Sourkes, T. L. (1955). Moritz Traube, 1826-1894: His Contribution to Biochemistry. Journal of the History of Medicine and Allied Sciences, 379–391.
  51. Starr, C., Evers, C., & Starr, L. (2013). Biology: Today and Tomorrow With Physiology (4th ed.). Brooks/Cole.
  52. Szymanski, W. G., Kierszniowska, S., & Schulze, W. X. (2013). Metabolic labeling and membrane fractionation for comparative proteomic analysis of Arabidopsis thaliana suspension cell cultures. JoVE (Journal of Visualized Experiments), (79), e50535–e50535.
  53. Tien, H. T., Carbone, S., & Dawidowicz, E. A. (1966). Formation of “black” lipid membranes by oxidation products of cholesterol. Nature, 212(5063), 718–719.
  54. Tien, H. T., & Diana, A. L. (1967). Some physical properties of bimolecular lipid membranes produced from new lipid solutions. Nature, 215(5106), 1199–1200.
  55. Weaver, R. F. (2012). Molecular biology (5th ed.). McGraw-Hill Education.
  56. Yeagle, P. L. (1993). The membranes of cells. 2nd. San Diego: Academic Press.

No hay comentarios:

Publicar un comentario