domingo, 2 de noviembre de 2014


  1. Aleklett, K., Morrissey, D. J., Loveland, W., McGaughey, P. L., & Seaborg, G. T. (1981). Energy dependence of Bi 209 fragmentation in relativistic nuclear collisions. Physical Review C, 23(3), 1044.
  2. Arabatzis, T. (2009). Cathode rays. In Compendium of Quantum Physics (pp. 89–92). Springer.
  3. Aston, F. W. (1911). The Distribution of Electric Force in the Crookes Dark Space. Proceedings of the Royal Society of London. Series A, 84(573), 526–535.
  4. Aston, F. W. (1942). Mass spectra and isotopes. Longmans, Green & Company.
  5. Bacciagaluppi, G., & Valentini, A. (2009). Quantum theory at the crossroads: reconsidering the 1927 Solvay conference. Cambridge University Press.
  6. Badash, L. (2005). Becquerel’s blunder. Social Research: An International Quarterly, 72(1), 31–62.
  7. Bahoueddine, T. (2016). Beyond the Madelung-Klechkowski Rule of aufbau Orbital Filling Principle. World Journal of Chemical Education, 3(6), 160–167.
  8. Bang, B. (n.d.). Nucleosynthesis: Building New Elements in the Cosmos.
  9. Baumgaertner, F. (1986). Sievert, Gray and Becquerel in place of rem, rad and Curie. In Nuclear fuel cycle.
  10. Bell, J. A. (2005). Chemistry: A General Chemistry Project of the American Chemical Society. (American Chemical Society, Ed.) (1st ed.). Freeman.
  11. Bell, J. S. (1964). On the einstein podolsky rosen paradox.
  12. Bennett, C. H., & Wiesner, S. J. (1992). Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20), 2881.
  13. Bent, H. A. (1986). Should atoms be X-rated? J. Chem. Educ, 63(10), 878.
  14. Bernal, A., & Daza, E. E. (2010). On the epistemological and ontological status of chemical relations. HYLE–International Journal for Philosophy of Chemistry, 16(2), 80–103.
  15. Bernatowicz, A. J. (1970). Dalton’s rule of simplicity. Journal of Chemical Education, 47(8), 577.
  16. Bigg, C. (2008). Evident atoms: Visuality in Jean Perrin’s Brownian motion research. Studies in History and Philosophy of Science Part A, 39(3), 312–322.
  17. Birks, J. B. (1963). Rutherford at Manchester. WA Benjamin.
  18. Blanco, D. (2012). Aristas controversiales en la caja negra de Darwin. Lógoi, (8).
  19. Blinn, J. F., & Goodstein, D. (1985). El Universo Mecánico: el universo cuántico mecánico. USA: PBS.
  20. Bocanegra, J. M. (1996). Centenario del descubrimiento de la radiactividad. Encuentros En La Biología, (29), 4.
  21. Borrelli, A. (2009). The emergence of selection rules and their encounter with group theory, 1913–1927. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 40(4), 327–337.
  22. Bowen, R. (1994). Rubidium-Strontium Dating. In Isotopes in the Earth Sciences (pp. 162–200). Springer.
  23. Boyle, R. (1911). The Sceptical Chymist: The Classic 1661 Text. Courier Dover Publications.
  24. Brady, J. E., & Humiston, G. E. (1986). General Chemistry: Principles and Structure. Wiley & Sons.
  25. Briggs, H., & Holding, B. (1986). Aspects of Secondary Student’s Understanding of Elementary Ideas in Chemistry: Full Report. Children’s Learning in Science Project, Centre for Studies in Science and Mathematics Education, the University.
  26. Brok, W. J. M. (2005). Modelling of transient phenomena in gas discharges (Vol. 68).
  27. Brown, T. L., LeMay, H. E. J., Bursten, B. E., Murphy, C. J., & Woodward, P. (2009). Chemistry the central science (11th ed.). Pearson; Prentice Hall.
  28. Buchdahl, G. (1965). A revolution in historiography of science. History of Science, 4, 55.
  29. Bussalo, J. M. F. (1993). A Crônica da Física do Estado Sólido: I. Do Tubo de Geissler às Válvulas a Vácuo. Revista Brasileira Do Ensino de Física, 15(1), 127–138.
  30. Chang, R. (2006). Chang’s “General Chemistry - Essential Concepts” (4th ed.). McGraw-Hill New York.
  31. Chang, R. (2010). Chemistry (10th ed.). McGraw-Hill New York.
  32. Chang, R., & Overby, J. (2011). General Chemistry,Th e Essential Concepts (11th ed.). McGraw-Hill New York.
  33. Choppin, G. R., Liljenzin, J.-O., & Rydberg, J. (2002). Radiochemistry and nuclear chemistry. Butterworth-Heinemann.
  34. Clarke, R. H., & Valentin, J. (2009). The History of ICRP and the Evolution of its Policies. Annals of the ICRP, 39(1), 75–110.
  35. Clary, D. C. (2013). 100 Years of Atomic Theory. Science, 341(6143), 244–245.
  36. Clericuzio, A. (2000). Elements, principles and corpuscles: A study of atomism and chemistry in the seventeenth century (Vol. 171). Springer.
  37. Close, F. (2014). Too hot to handle: The race for cold fusion. Princeton University Press.
  38. Coderre, J. A. (2003). 22.01 Introduction to Ionizing Radiation, Fall 2003.
  39. Compton, A. H. (1956). Atomic quest, a personal narrative.
  40. Cornford, F. M. (2000). Plato’s cosmology: the Timaeus of Plato (Vol. 4). Psychology Press.
  41. Cornwell, J. (2004). Hitler’s scientists: science, war, and the devil's pact. Penguin.
  42. Curie, M. (1898). Rays emitted by compounds of uranium and thorium. Comptes Rendus de Seances de L’academie de Sciences, 126(1), 101.
  43. Curie, M. (1911). Radium and the new concepts in chemistry. In Nobel Conference Lecture, Stockholm (Vol. 11, p. 1911).
  44. Curie, M., & Lippmann, G. M. (1898). Rayons émis par les composés de l’uranium et du thorium. Gauthier-Villars.
  45. Curie, M., & Regaud, C. (1920). Pour le dévelopement de l’Institut du Radium de Paris et pour l’avenir de la radiumthérapie en France. Paris: Institut Du Radium.
  46. Curie, M. S. (1910). Traité de radioactivité.
  47. Curie, M. S., & Curie, P. (1898). Sur une substance nouvelle radio-active contenue dans la pechblende. Comptes Rendus de l’Académie Des Sciences., 127, 1101–1103.
  48. Dahl, P. F. (1997). Flash of the cathode rays: A History of JJ Thomson’s electron. CRC Press.
  49. Dalrymple, G. B. (1994). The age of the Earth. Stanford University Press.
  50. Dalrymple, G. B., & Lanphere, M. A. (1969). Potassium-argon dating: Principles, techniques and applications to geochronology. In (Freeman) San Francisco, California (p. 258).
  51. Dalton, J. (1805). On the absorption of gases by water and other liquids. S. Russell.
  52. Dalton, J. (2010). A new system of chemical philosophy (Vol. 1). Cambridge University Press.
  53. Daubeny, C. (1850). Supplement to the Introduction to the atomic theory: comprehending a sketch of certain opinions and discoveries bearing upon the general principles of chemical philosophy, which have been brought into notice since the publication of that work. University Press.
  54. DeYoung, D. B. (1998). Creation and quantum mechanics. Institute for Creation Research.
  55. Dickin, A. P. (1997). Radiogenic isotope geology. Cambridge University Press.
  56. Dijksterhuis, E. J., & Dikshoorn, C. (1969). The mechanization of the world picture. Oxford University Press Oxford.
  57. Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 610–624.
  58. Dylla, H. F. (2006). Introduction to vacuum science and technology. In CERN Accelerator School.
  59. Ebbing, D. D., & Gammon, S. D. (2008). General chemistry. (Houghton Mifflin Company, Ed.) (9th ed.). Bonston.
  60. Eckert, M. (2014). How Sommerfeld extended Bohr’s model of the atom (1913–1916). The European Physical Journal H, 39(2), 141–156.
  61. Eliade, M., ET, & Ledesma, M. P. (1974). Herreros y alquimistas. Alianza Madrid.
  62. Fajans, K. (1913). Über eine Beziehung zwischen der Art einer radioaktiven Umwandlung und dem elektrochemischen Verhalten der betreffenden Radioelemente. Physicalische Zeitschrift, 14, 131–136.
  63. Falconer, I. (1987). Corpuscles, Electrons and Cathode Rays: JJ Thomson and the “Discovery of the Electron.” The British Journal for the History of Science, 20(03), 241–276.
  64. Faraday, M. (1838). VIII. Experimental researches in electricity. — Thirteenth series. Philosophical Transactions of the Royal Society of London, 128, 125–168.
  65. Feather, N. (1932). The collisions of neutrons with nitrogen nuclei. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 709–727.
  66. Ferguson, L. (2015). Control Systems as Used by the Ancient World.
  67. Fermi, E. (1934a). Possible production of elements of atomic number higher than 92. Nature, 133, 898–899.
  68. Fermi, E. (1934b). Radioactivity induced by neutron bombardment. Nature, 133, 757.
  69. Fermi, E., Amaldi, E., D’Agostino, O., & Rasetti, F. (1934). Artificial radioactivity produced by neutron bombardment. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 483–500.
  70. Freeman, J. H. (1987). Canal rays to ion implantation: 1886-1986. Radiation Effects, 100(3-4), 161–248.
  71. Friedlander, P. (2015). 14. Plato as physicist: Structure and destruction of the atom according to Plato’s timaeus.
  72. Fröman, N. (1996). Marie and Pierre Curie and the discovery of polonium and radium. Lecture at the Royal Swedish Academy of Sciences, Stockholm, 28.
  73. Gamow, G. (1930). Mass defect curve and nuclear constitution. Proceedings of the Royal Society of London. Series A, 126(803), 632–644.
  74. Garber, D. (1987). How God causes motion: Descartes, divine sustenance, and occasionalism. JSTOR.
  75. Garritz, A. (2005). El modelo atómico nuclear. Con Escepticismo, ¿Existen los átomos? ¿Cómo son?
  76. Geiger, H. (1908). On the Scattering of the α-Particles by Matter. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 81(546), 174–177.
  77. Geiger, H. (1910). The Scattering of the α-Particles by Matter. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 83(565), 492–504.
  78. Geiger, H., & Marsden, E. (1909). On a Diffuse Reflection of the α-Particles. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82(557), 495–500.
  79. Geiger, H., & Marsden, E. (1913). The Laws of Deflexion of α Particles Through Large Angles. Philosophical Magazine, 6(25), 604–623.
  80. Geyh, M. A., & Schleicher, H. (1990). Absolute age determination. Physical and chemical dating methods and their application. Absolute Age Determination. Physical and Chemical Dating Methods and Their Application., by Geyh, MA; Schleicher, H.. Springer, Berlin (Germany, FR), 1990, 514 P., ISBN 3-540-51276-4, Price DM 98.00. ISBN 0-387-51276-4 (USA)., 1.
  81. Glasser, O. (1995). WC Roentgen and the discovery of the Roentgen rays. AJR. American Journal of Roentgenology, 165(5), 1033–1040.
  82. Glausser, W. (1991). Atomistic Simulacra in the Enlightenment and in Blake’s Post-Enlightenment. The Eighteenth Century, 73–88.
  83. Goldberg, S. (1992). Inventing a climate of opinion: Vannevar Bush and the decision to build the bomb. Isis, 83(3), 429–452.
  84. Gonzalez-Magana, O., Cabrera-Trujillo, R., Salazar, M., Gleason, C., González, E., & Hinojosa, G. (n.d.). Double electron capture by protons from Ar, H2 and He.
  85. Gosling, F. G. (1999). The Manhattan Project: making the atomic bomb. Diane Publishing.
  86. Grady, D. (1998). A Glow in the Dark, and a Lesson in Scientific Peril. The New York Times, 6.
  87. Graebner, W., & Else, J. (1988). The Day after Trinity: J. Robert Oppenheimer & the Atomic Bomb (Film). JSTOR.
  88. Gribbin, J. (2011). In search of Schrodinger’s cat: Quantum physics and reality. Bantam.
  89. Gusev, A. I. (2014). Nonstoichiometry and superstructures. Physics-Uspekhi, 57(9), 839.
  90. Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.-M., & Haroche, S. (1997). Generation of Einstein-Podolsky-Rosen pairs of atoms. Physical Review Letters, 79(1), 1.
  91. Hahn, O. (1958). The discovery of fission. Scientific American, 198(2), 76–84.
  92. Hanich, L., Holtzman, S., Pope, B., Braga, B., Tyson, N. G., Silvestri, A., & Sagan, C. (2014). Cosmos: A Spacetime Odyssey: Sisters of the Sun. USA: Twentieth Century Fox Home Entertainment Ltd.
  93. Hansen, A. J. (1976). The Dice of God: Einstein, Heisenberg, and Robert Coover. In Novel: A Forum on Fiction (Vol. 10, pp. 49–58). JSTOR.
  94. Harvie, D. I. (1999). The radium century. Endeavour, 23(3), 100–105.
  95. Haw, M. (2005). Einstein’s random walk. Physics World, 18(1), 19–22.
  96. Heilbron, J. L. (2001). History in science education, with cautionary tales about the agreement of measurement and theory. In Science Education and Culture (pp. 5–15). Springer.
  97. Herken, G. (2002). Brotherhood of the Bomb: the tangled lives and loyalties of Robert Oppenheimer, Ernest Lawrence, and Edward Teller. Macmillan.
  98. Hesse, J. J., & Anderson, C. W. (1992). Students’ conceptions of chemical change. Journal of Research in Science Teaching, 29(3), 277–299.
  99. Hoddeson, L. (1993). Critical assembly: a technical history of Los Alamos during the Oppenheimer years, 1943-1945. Cambridge University Press.
  100. Holmes-Siedle, A., & Adams, L. (1993). Handbook of radiation effects.
  101. Howard, D. (2004). Who invented the “Copenhagen Interpretation”? A study in mythology. Philosophy of Science, 71(5), 669–682.
  102. Hoyle, F., & Fowler, W. A. (1960). Nucleosynthesis in Supernovae. The Astrophysical Journal, 132, 565.
  103. Hrabak, M., Padovan, R. S., Kralik, M., Ozretic, D., & Potocki, K. (2008). Nikola Tesla and the Discovery of X-rays 1. Radiographics, 28(4), 1189–1192.
  104. Ireland, T. (1999). New tools for isotopic analysis. Science, 286(5448), 2289–2290.
  105. Jakubek, J. (2007). Data processing and image reconstruction methods for pixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 576(1), 223–234.
  106. Jeans, J. H. (1906). On the Constitution o f the Atom. Phil. Mag, 11(6), 604–607.
  107. Jensen, W. B. (1984). Abegg, Lewis, Langmuir, and the octet rule. Journal of Chemical Education, 61(3), 191.
  108. Jespersen, N. D., Brady, J. E., & Hyslop, A. (2012a). Chemistry The Molecular Nature of Matter (6th ed.). Wiley Online Library.
  109. Jespersen, N. D., Brady, J. E., & Hyslop, A. (2012b). Chemistry The Molecular Nature of Matter (6th ed.). USA: Wiley.
  110. Jönsson, C. (1961). Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift Für Physik, 161(4), 454–474.
  111. Jönsson, C. (1974). Electron diffraction at multiple slits. Am. J. Phys, 42(1), 4–11.
  112. Keshteli, M. B. (2016). Big Bang Nucleosynthesis.
  113. Khoon, K. A. (2011). The cornerstones of modern physics. College Student Journal, 45(3), 630.
  114. Klein, O. (1929). Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Zeitschrift Für Physik, 53(3-4), 157–165.
  115. Konopinski, E. J., Marvin, C., & Teller, E. (1946). Ignition of the atmosphere with nuclear bombs. Report LA-602. Los Alamos, NM: Los Alamos Laboratory.
  116. Kooser, R. G., & Factor, L. (1983). Cubes, Eights, and Dots: A Student’s Guide to the Octet Rule and Its History.
  117. Kragh, H. (2010). Before Bohr: Theories of atomic structure 1850-1913. RePoSS: Research Publications on Science Studies, 10.
  118. Kurzweil, R., Richter, R., & Schneider, M. L. (1990). The age of intelligent machines (Vol. 579). MIT press Cambridge.
  119. L’Annunziata, M. F. (2012). Handbook of radioactivity analysis. Academic Press.
  120. Lakatos, I. (1978). The methodology of scientific research programmes. Cambridge University Press.
  121. Langanke, K., & Barnes, C. A. (2002). Nucleosynthesis in the big bang and in stars. In Advances in Nuclear Physics (pp. 173–263). Springer.
  122. Langevin-Joliot, H. (2011). Marie Curie and her time. Chemistry International, 33(1), 4.
  123. Lanouette, W. (2013). Genius in the Shadows: A Biography of Leo Szilard, the Man Behind the Bomb. Skyhorse Publishing, Inc.
  124. Leicester, H. M., & Klickstein, H. S. (1952). A Source Book in Chemistry, 1400-1900 (Vol. 1). Harvard University Press.
  125. Lenard, P. (1903). Über die Absorption von Kathodenstrahlen verschiedener Geschwindigkeit. Annalen Der Physik, 317(12), 714–744.
  126. Lennon, T. M. (1993). The battle of the gods and giants: the legacies of Descartes and Gassendi, 1655-1715. Princeton University Press Princeton.
  127. Lennon, T. M. (2014). The battle of the gods and giants: the legacies of Descartes and Gassendi, 1655-1715. Princeton University Press.
  128. Leone, M., & Robotti, N. (2008). PMS Blackett, G Occhialini and the invention of the counter-controlled cloud chamber (1931–32). European Journal of Physics, 29(2), 177.
  129. Levere, T. H. (2001). Transforming matter: a history of chemistry from alchemy to the buckyball. JHU Press.
  130. Lewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38(4), 762–785.
  131. Li, X., Liang, X., Sun, M., Guan, H., & Malpas, J. G. (2001). Precise< sup> 206</sup> Pb/< sup> 238</sup> U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation. Chemical Geology, 175(3), 209–219.
  132. Lindemann, F. A. (1914). Atomic models and X-ray spectra. Nature, 92, 500–501.
  133. Lipeles, E. S. (1983). The chemical contributions of Amadeo Avogadro. Journal of Chemical Education, 60(2), 127.
  134. Lloyd, D. R. (2007). The chemistry of Platonic triangles: problems in the interpretation of the Timaeus. HYLE-International Journal for Philosophy of Chemistry, 13, 99–118.
  135. Lloyd, G. E. R., & Lloyd, G. E. (1968). Aristotle: the growth and structure of his thought. Cambridge University Press Cambridge.
  136. Maestre, G., Camaño, A., Mayós, C., & Ventura, T. (1983). Consideraciones sobre algunos errores conceptuales en el aprendizaje de la química en el bachillerato. Enseñanza de Las Ciencias: Revista de Investigación Y Experiencias Didácticas, 1(3), 198–200.
  137. Malam, J. (2002). The bombing of Hiroshima: August 6, 1945. Black Rabbit Books.
  138. Maleeh, R., & Amani, P. (2013). Pragmatism, Bohr, and the Copenhagen interpretation of quantum mechanics. International Studies in the Philosophy of Science, 27(4), 353–367.
  139. Malone, A., Sagan, C., Druyan, A., & Soter, S. (1980). Cosmos: A Personal Voyage: The Lives of the Stars. United States: PBS.
  140. Manley, J. H. (1974). Assembling the Wartime Labs. Bulletin of the Atomic Scientists, 30(5), 42–48.
  141. Manyeruke, T. D., Blenkinsop, T. G., Buchholz, P., Love, D., Oberthür, T., Vetter, U. K., & Davis, D. W. (2004). The age and petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: first evidence for early Paleoproterozoic magmatism in Zimbabwe. Journal of African Earth Sciences, 40(5), 281–292.
  142. Matamála, M., & Gonzalez, P. (1976). Química General. Cultural.
  143. Mehra, J. (2012). The Solvay Conferences on physics: aspects of the development of physics since 1911. Springer Science & Business Media.
  144. Meinel, C. (1988). Early Seventeenth-Century Atomism: Theory, Epistemology, and the Insufficiency of Experiment. Isis, 68–103.
  145. Merli, P. G., Missiroli, G., & Pozzi, G. (1976). On the statistical aspect of electron interference phenomena. Am. J. Phys, 44(3), 306–307.
  146. Miethe, A. (1924). Der Zerfall des Quecksilberatoms. Naturwissenschaften, 12(29), 597–598.
  147. Millikan, R. A. (1913). On the elementary electrical charge and the Avogadro constant. Physical Review, 2(2), 109–143.
  148. Mould, R. F. (1998). The discovery of radium in 1898 by Maria Sklodowska-Curie (1867-1934) and Pierre Curie (1859-1906) with commentary on their life and times. The British Journal of Radiology, 71(852), 1229–1254.
  149. Mould, R. F. (1999). Marie and Pierre Curie and radium: history, mystery, and discovery. Medical Physics, 26(9), 1766–1772.
  150. Nagaoka, H. (1904). LV. Kinetics of a system of particles illustrating the line and the band spectrum and the phenomena of radioactivity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7(41), 445–455.
  151. Nagel, M. C. (1982). Frederick Soddy: From alchemy to isotopes. Journal of Chemical Education, 59(9), 739.
  152. Nash, L. K. (1956). The origin of Dalton’s chemical atomic theory. Isis, 101–116.
  153. Nauenberg, M. (1989). Quantum wave packets on Kepler elliptic orbits. Physical Review A, 40(2), 1133.
  154. Newton, I. (1718). Opticks (2003rd ed.). Prometheus Books.
  155. Niaz, M. (2001). How important are the laws of definite and multiple proportions in chemistry and teaching chemistry?–A history and philosophy of science perspective. Science & Education, 10(3), 243–266.
  156. Niaz, M., & Cardellini, L. (2010). What Can the Bohr− Sommerfeld Model Show Students of Chemistry in the 21st Century? Journal of Chemical Education, 88(2), 240–243.
  157. Nisio, S. (1973). The formation of the Sommerfeld quantum theory of 1916. Japanese Studies in the History of Science, 12, 39–78.
  158. Oberthür, T., Davis, D. W., Blenkinsop, T. G., & Höhndorf, A. (2002). Precise U–Pb mineral ages, Rb–Sr and Sm–Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Research, 113(3), 293–305.
  159. Oesper, R. E. (1945). Hans Landolt (1831-1910). J. Chem. Educ, 22(4), 158.
  160. Oliphant, M. L. E., Harteck, P., & Rutherford, Lord. (1934). Transmutation effects observed with heavy hydrogen. Proceedings of the Royal Society of London. Series A, 144(853), 692–703.
  161. Oltra, C., Delicado, A., Prades, A., Pereira, S., & Schmidt, L. (2014). The Holy Grail of energy? A content and thematic analysis of the presentation of nuclear fusion on the Internet. Journal of Science Communication, 13.
  162. Pais, A. (1991). Niels Bohr’s times: in physics, philosophy, and polity. Clarendon Press Oxford.
  163. Paneth, F. A. (2003). The epistemological status of the chemical concept of element. Foundations of Chemistry, 5(2), 113–145.
  164. Park, B. S., & Stetten Jr, D. (2001). A Principle Written in Diagrams: The Aufbau Principle for Molecules and Its Visual Representations, 1927–1932. In Tools and Modes of Representation in the Laboratory Sciences (pp. 179–198). Springer.
  165. Park, J.-C., Kim, D., Lee, C.-S., & Kim, D.-K. (1999). A new synthetic route to wüstite. BULLETIN-KOREAN CHEMICAL SOCIETY, 20, 1005–1009.
  166. Pauli, W. (1994). Exclusion principle and quantum mechanics. In Writings on Physics and Philosophy (pp. 165–181). Springer.
  167. Payne, C. H. (1925). Stellar Atmospheres; a Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars.
  168. Perrin, J. (1909). Mouvement brownien et réalité moléculaire. In Annales de Chimie et de Physique (Vol. 18, pp. 5–104).
  169. Perrin, J. (1911). La réalité des molécules. Revue Scientifique, 25(16), 774–784.
  170. Perrin, J. (1913). Les atomes. Alcan.
  171. Petrucci, R. H., Herring, F. G., Madura, J. D., & Bissonnette, C. (2010). General Chemistry Principles and Modern Applications (10th ed.). Pearson.
  172. Pohle, W. (1971). The mathematical Foundations of Plato’s atomic Physics. Isis, 36–46.
  173. Prout, W. (1816). Correction of a mistake in the essay on the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Annals of Philosophy, 7, 111–113.
  174. Prout, W., & Thomson, T. (1816). On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms.
  175. Pycior, H. M. (1993). Reaping the benefits of collaboration while avoiding its pitfalls: Marie Curie’s rise to scientific prominence. Social Studies of Science, 23(2), 301–323.
  176. Radiation, U. N. S. C. on the E. of A. (2000). Sources and effects of ionizing radiation: sources (Vol. 1). United Nations Publications.
  177. Raimond, J.-M., Brune, M., & Haroche, S. (2001). Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73(3), 565.
  178. Raizer, Y. P., Kisin, V. I., & Allen, J. E. (1991). Gas discharge physics (Vol. 1). Springer-Verlag Berlin.
  179. Rayleigh, Lord. (1906). VII. On electrical vibrations and the constitution of the atom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 11(61), 117–123.
  180. Redhead, P. A. (1999). The ultimate vacuum. Vacuum, 53(1), 137–149.
  181. Reid, R. (1995). Marie Curie. Salvat Editores.
  182. Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., … Cutler, K. B. (2004). IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP.
  183. Rhodes, R. (2016). The Making of the Atomic Bomb. Simon & Schuster Audio.
  184. Röntgen, W. C. (1896). On a new kind of rays. Science, 3(59), 227–231.
  185. Rosa, R. (2012). The Merli–Missiroli–Pozzi two-slit electron-interference experiment. Physics in Perspective, 14(2), 178–195.
  186. Rutherford, E. (1899). VIII. Uranium radiation and the electrical conduction produced by it. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(284), 109–163.
  187. Rutherford, E. (1925). The stability of atoms. Journal of the Royal Society of Arts, 389–403.
  188. Rutherford, E. (2012). The Scattering of α and β Particles by Matter and the Structure of the Atom. Philosophical Magazine, 92(4), 379–398.
  189. Rutherford, E., & Chadwick, J. (1921). The Disintegration of Elements by alpha-Particles. Nature, 107, 41.
  190. Rutherford, E., Chadwick, J., Ellis, C. D., Fowler, R. H., McLennan, J. C., Lindemann, F. A., & Mott, N. F. (1932). Discussion on the Structure of Atomic Nuclei. Opening Address. Proceedings of the Royal Society of London. Series A, 136(830), 735–762.
  191. Sabra, A. I. (1981). Theories of light, from Descartes to Newton. CUP Archive.
  192. Sansare, K., Khanna, V., & Karjodkar, F. (2014). Early victims of X-rays: a tribute and current perception.
  193. Scerri, E. R. (1998). The evolution of the periodic system. Scientific American, 279(3), 56–61.
  194. Scerri, E. R. (2009). The dual sense of the term “element,” attempts to derive the Madelung rule, and the optimal form of the periodic table, if any. International Journal of Quantum Chemistry, 109(5), 959–971.
  195. Scerri, E. R. (2011). The periodic table. Philosophy of Chemistry, 6, 329.
  196. Schonland, B. F. J. (1923). The passage of cathode rays through matter. Proceedings of the Royal Society of London. Series A, 104(725), 235–247.
  197. Schott, G. A. (1906). II. On the electron theory of matter and the explanation of fine spectrum lines and of gravitation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12(67), 21–29.
  198. Schrödinger, E. (1926a). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049.
  199. Schrödinger, E. (1926b). Quantisierung als eigenwertproblem. Annalen Der Physik, 385(13), 437–490.
  200. Schrödinger, E. (1926c). Über das Verhältnis der Heisenberg‐Born‐Jordanschen Quantenmechanik zu der meinem. Annalen Der Physik, 384(8), 734–756.
  201. Serway, R. A., & Jewett, J. W. J. (2010). Physics for Scientists and Engineers with Modern Physics, Ninth Edition (8th ed.). Boston: Brooks/Cole.
  202. Serway, R. A., & Jewett, J. W. J. (2014). Physics for Scientists and Engineers with Modern Physics, Ninth Edition (9th ed.). Boston: Brooks/Cole.
  203. Seth, S. (2008). Crafting the quantum: Arnold Sommerfeld and the older quantum theory. Studies in History and Philosophy of Science Part A, 39(3), 335–348.
  204. Sime, R. L. (1990). Belated recognition: Lise Meitner’s role in the discovery of fission. Journal of Radioanalytical and Nuclear Chemistry, 142(1), 13–26.
  205. Sinclair, S. B. (2013). JJ Thomson and the chemical atom: From ether vortex to atomic decay. Ambix.
  206. Soddy, F. (1913). Intra-atomic charge. Nature, 92(2301), 399–400.
  207. Sommerfeld, A. (1920a). Allgemeine spektroskopische Gesetze, insbesondere ein magnetooptischer Zerlegungssatz. Annalen Der Physik, 368(19), 221–263.
  208. Sommerfeld, A. (1920b). Ein Zahlenmysterium in der Theorie des Zeemaneffektes. Naturwissenschaften, 8(4), 61–64.
  209. Stains, M., & Talanquer, V. (2007). A2: Element or Compound? Journal of Chemical Education, 84(5), 880.
  210. Stewart, K., Turner, S., Kelley, S., Hawkesworth, C., Kirstein, L., & Mantovani, M. (1996). 3-D,< sup> 40</sup> Ar< sup> 39</sup> Ar geochronology in the Paraná continental flood basalt province. Earth and Planetary Science Letters, 143(1), 95–109.
  211. Stewart, P. J. (2010). Charles Janet: unrecognized genius of the periodic system. Foundations of Chemistry, 12(1), 5–15.
  212. Strathern, P. (2000). Mendeleyev’s Dream: The Quest for the Elements. (H. Hamilton, Ed.)Hamish Hamilton, London. London.
  213. Stuewer, R. H. (1983). The nuclear electron hypothesis. In Otto Hahn and the rise of nuclear physics (pp. 19–67). Springer.
  214. Swift, A. R., & Wright, R. (1980). Generalized Stern–Gerlach experiments and the observability of arbitrary spin operators. Journal of Mathematical Physics, 21(1), 77–82.
  215. Tarbuck, E. J., Lutgents, F. K., & Tasa, D. (2014). Earth, an introduction to physical geology, 11ed. Boston, Pearson.
  216. Tegmark, M., & Wheeler, J. A. (2001). 100 Years of the Quantum. arXiv Preprint Quant-ph/0101077.
  217. Thomson, J. J. (1897). XL. Cathode Rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 44(269), 293–316.
  218. Thomson, J. J. (1900). The discharge of electricity through gases. Scribner.
  219. Thomson, J. J. (1910). LXXXIII. Rays of positive electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 20(118), 752–767.
  220. Thomson, J.-J. (1912). XIX. Further experiments on positive rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24(140), 209–253.
  221. Thomson, T. (1820). A System of Chemistry: In Four Volumes (Vol. 1). Baldwin, Cradock, and Joy.
  222. Timberlake, K. C. (2015). Chemistry An Introduction to General, Organic, and Biological Chemistry (15th ed.). USA: Pearson.
  223. Tipler, P. A., & Llewellyn, R. A. (2012). Modern Physics (6th ed.). New York: Freeman.
  224. Tipler, P. A., & Mosca, G. (2008). Physics for scientists and engineers, with modern physics (6th ed.). New York: W. H. Freeman and Company.
  225. Togan, E., Chu, Y., Trifonov, A. S., Jiang, L., Maze, J., Childress, L., … Zibrov, A. S. (2010). Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 466(7307), 730–734.
  226. Uddin, M. M., Mostafa, M. G., Belayet, H., Salam, S. M., Nithe, N. A., & Nasir, M. D. (2016). New Energy Sources: Technological Status and Economic Potentialities. Global Journal of Science Frontier Research, 16(1).
  227. Valentini, A. (2009). Beyond the quantum. Physics World, 22(11), 32.
  228. Van den Broek, A. (1914). XLIX. On nuclear electrons. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(159), 455–457.
  229. Van Melsen, A. G. (2004). From atomos to atom: The history of the concept atom. Courier Dover Publications.
  230. Verdejo, M. E. (2012). La realidad última: átomos y vínculos sustanciales. Eikasia: Revista de Filosofía, (43), 47–60.
  231. Wade, L. G. (2012). Organic chemistry (8th ed.). USA: Prentice Hall.
  232. Walker, M., & Walker, M. J. C. (2005). Quaternary dating methods. John Wiley and Sons.
  233. Welch, C. J., Ray, S., Melendez, J., Fare, T., & Leach, M. (2010). Virtual conferences becoming a reality. Nature Chemistry, 2(3), 148–152.
  234. Whiddington, R. (1914). The transmission of cathode rays through matter. Proceedings of the Royal Society of London. Series A, 89(614), 554–560.
  235. Whitaker, R. D. (1975). An historical note on the conservation of mass. Journal of Chemical Education, 52(10), 658.
  236. Woosley, S. E., & Heger, A. (2007). Nucleosynthesis and remnants in massive stars of solar metallicity. Physics Reports, 442(1), 269–283.
  237. Yadeta, C. (2007). STUDY OF ALPHA INDUCED REACTIONS ON IRIDIUM. Addis Ababa University.
  238. Yanagi, N., Ito, S., Terazaki, Y., Seino, Y., Hamaguchi, S., Tamura, H., … Sagara, A. (2015). Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor. Nuclear Fusion, 55(5), 53021.
  239. Young, R. A. (1961). X-ray Diffraction. Engineering Experiment Station, Georgia Institute of Technology.
  240. Zeeman, P. (1897). On the Influence of Magnetism on the Nature of the Light Emitted by a Substance. The Astrophysical Journal, 5, 332.
  241. Zelefsky, M., Leibel, S., Gaudin, P., Kutcher, G., Fleshner, N., Venkatramen, E. S., … Fuks, Z. (1998). Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. International Journal of Radiation Oncology* Biology* Physics, 41(3), 491–500.
  242. Zepeda, J. R. (2009). Descartes and His Critics on Space and Vacuum. University of Notre Dame.
  243. Zumdahl, S. S., & Zumdahl, S. A. (2007). Chemistry.

No hay comentarios:

Publicar un comentario